SUBJECT: Macao Aviation Requirements

MAR-66 Licensing of Aircraft Maintenance Engineer

EFFECTIVE DATE:

13 June 2016

CANCELLATION:

This AC supersedes AC/AW/006R02 dated 15 Nov 2013.

Note: The content of AC/AW/006R02 is entirely relocated to this AC/PEL/013R00.

GENERAL:

The President of Civil Aviation Authority (AACM), in exercise of his power under Article 35 of the Statutes of AACM approved by the Decree-Law 10/91/M and Paragraph 89 of the ANRM establishes this Aeronautical Circular (AC).

1 Amendment to ANRM published under Executive Order 46/2013

1.1 Paragraph 11(b) under “Part B - Requirements for the validity and renewal of licences” of the Fourth Schedule of ANRM shall be revised as follow:

“a licence which has lapsed for less than 24 months will only be renewed for a period not exceeding 5 years from the date of application for renewal, but a renewal fee for 5 years is payable;”

1.2 Paragraph 11(d) under “Part B - Requirements for the validity and renewal of licences” of the Fourth Schedule of ANRM shall be revised as follow:

“a licence which has lapsed for more than 24 months will not be renewed without verification of the competency of the holder. The extent of competency verification is dependent upon the working experience of the holder since the licence has expired.”
1.3 Paragraph 16(1) under “Part C - Licences, ratings and categories” of the Fourth Schedule of ANRM shall be revised as follow:

“The Civil Aviation Authority requires that one or various of the following category ratings shall be included in an aircraft maintenance engineer’s licence issued in Macao, whichever is the case:

(a) Category A: Line maintenance certifying mechanic;
(b) Category B1: Line maintenance certifying technician – mechanical;
(c) Category B2: Line maintenance certifying technician – avionic;
(d) Category B3: Certifying engineer – small piston-engine aeroplane;
(e) Category C: Base maintenance certifying engineer.

The categories A and B1 have the following sub-categories:

(a) Sub-categories A1 and B1.1 Aeroplanes Turbine;
(b) Sub-categories A2 and B1.2 Aeroplanes Piston;
(c) Sub-categories A3 and B1.3 Helicopters Turbine;
(d) Sub-categories A4 and B1.4 Helicopters Piston.”

1.4 Paragraph 20(1) under “Part D – Privileges of the licences holders” of the Fourth Schedule of ANRM shall be revised as follow:

“Subject to compliance with the requirements specified in sub-paragraph (2) of this paragraph, the privileges of the holder of an aircraft maintenance engineer licence shall be to certify the aircraft or parts of the aircraft as airworthy after an authorized repair, modification or installation of a engine, accessory, instrument, and/or item of equipment, and to sign a Certificate of release to service or a Certificate of fitness for flight following inspection, maintenance operations, routine servicing and/or sign a Certificate of maintenance review in accordance with the maintenance programme approved under this regulation.”

2 The complete reissue of MAR-66 Licensing of Aircraft Maintenance Engineer

2.1 The MAR-66 Issue 2 Licensing of Aircraft Maintenance Engineer, enclosed in Appendix 1 of this AC, revises the minimum requirements for the issue of aircraft maintenance engineer licence mentioned in Paragraph 11 of the ANRM.

2.3 The MAR-66 was first issued on 30 June 2006 and came into force on 01 August 2006.

2.4 Highlights of changes

Changes have been stated in the Preambles of MAR-66 in detail and the following highlights the major changes:

2.4.1 Group/Sub-group ratings are introduced in which the required standard is aligned with EASA Part-66;

2.4.2 Privileges of B1 and B2 aircraft maintenance licence, type and group ratings and related training/experience requirement are aligned with EASA Part-66;

2.4.3 Aircraft maintenance licence category B3 for small piston-engine aeroplane is introduced;

2.4.4 Time limit for demonstrating compliance with knowledge and experience requirements are introduced:

 (a) All basic knowledge examinations and experience have to be passed within a 10 years period preceding the application for an aircraft maintenance engineer licence or the addition of a category or subcategory to such a licence;

 (b) For a type rating endorsement, knowledge and experience requirement have to be started and completed within the 3 years preceding the application.

2.4.5 Essay questions in modules 7, 9 and 10 are introduced in the amended syllabus.

2.5 Grandfather provisions

2.5.1 Certifying staff holding a licence issued in accordance with previous MAR-66 in a given category/sub-category are deemed to have the privileges described in point 66.20(a) of this MAR-66 corresponding to such a category/sub-category. The basic knowledge requirements
corresponding to these new privileges shall be deemed as met for the purpose of extending such licence to a new category/sub-category.

Note: The previously endorsed limitations will remain and can be removed by taking the appropriate conversion examinations.

2.5.2 Basic knowledge examinations and basic experience completed before the effective date of this MAR-66 Issue 2 are considered valid for ten (10) years (until 31 Dec 2023). The recent maintenance experience is still required referring to MAR 66.30.

In the case of licence extension to a new category/sub-category, the ten year limit for basic knowledge examinations, for the common modules/sub-modules which are part of an already endorsed licence category/sub-category, does not apply.

2.5.3 Theoretical type training and examinations, practical training and assessment, and on the job training (OJT) commenced before the effective date of this MAR-66 Issue 2 are considered valid for three (3) years (until 31 Dec 2016).

2.5.4 Previously approved or accepted type training courses including OJT shall be started and finished not later than 31 Dec 2014 (1 year after the effective date of the new MAR-66).

- END -
Appendix 1

Macao Aviation Requirements

MAR-66

Licensing of Aircraft Maintenance Engineer

Issue 2

Approved by:

President
AACM
Application for further copies of the Macau Aviation Requirements should be addressed to:

Civil Aviation Authority
Alameda Dr. Carlos D’Assumpção, 336-342
Centro Comercial Cheng Feng, 18º andar
Macau
CHINA

FAX : (853) 28338089
TEL : (853) 28511213
E-MAIL: aacm@aacm.gov.mo
Table of Content

LIST OF EFFECTIVE PAGES ... 0-4
FOREWORD ... 0-5
PREAMBLES ... 0-6
SECTION 1. REQUIREMENTS .. 1-1
 MAR 66.2 Effectivity ... 1-1
 MAR 66.3 Licence Categories .. 1-2
 MAR 66.5 Aircraft Groups ... 1-2
 MAR 66.10 Application .. 1-2
 MAR 66.15 Eligibility ... 1-3
 MAR 66.20 Privileges ... 1-3
 MAR 66.25 Basic Knowledge Requirements 1-4
 MAR 66.30 Basic Experience Requirements 1-5
 MAR 66.40 Continuity of the Aircraft Maintenance Engineer Licence .. 1-6
 MAR 66.45 Endorsement with Aircraft Ratings 1-6
 MAR 66.50 Limitations .. 1-8
 MAR 66.55 Evidence of Qualification ... 1-8
 MAR 66.60 Equivalent Safety Cases ... 1-8
 MAR 66.65 Revocation, Suspension or Limitation of the MAR-66 Aircraft Maintenance Licence ... 1-8
 MAR 66.70 Conversion Provisions ... 1-9

SECTION 2. ACCEPTABLE MEANS OF COMPLIANCE / GUIDANCE MATERIAL
 (AMC & GM) ... 2-1
 GM 66.3 Licence Categories ... 2-1
 AMC 66.10 Application .. 2-1
 GM 66.20(a) Privileges .. 2-2
 AMC 66.20(b) Privileges .. 2-4
 GM 66.20(b)2 Privileges ... 2-6
 AMC 66.20(b)3 Privileges .. 2-6
 GM 66.20(b)4 Privileges ... 2-7
 AMC 66.20(b)5 Privileges .. 2-7
 AMC 66.25 Basic Knowledge Requirements 2-8
 GM 66.25(a) Basic Knowledge Requirements 2-8
 AMC 66.30(a) Basic Experience Requirements 2-8
 AMC 66.30(d) Basic Experience Requirements 2-9
 AMC 66.30(e) Basic Experience Requirements 2-9
 GM 66.40 Continuity of the Aircraft Maintenance Engineer Licence .. 2-9
 AMC 66.45(d) Endorsement with Aircraft Ratings 2-10
 AMC 66.45 (d)3, (e)1 and (f)1 Endorsement with Aircraft Ratings .. 2-11
 GM 66.45 Endorsement with Aircraft Ratings 2-11
 AMC 66.50(b) Limitations ... 2-13
 AMC 66.60 Equivalent Safety Cases ... 2-13
 AMC 66.70 Conversion Provisions ... 2-13

APPENDIX 1 Basic Knowledge Requirements APP1-1
APPENDIX 2 Basic Examination Standard .. APP2-1
APPENDIX 3 Aircraft Type Training and Examination Standard On the Job Training .. APP3-1
APPENDIX 4 Experience requirements for extending a MAR-66 Aircraft Maintenance Engineer Licence .. APP4-1
APPENDIX 5 Sample of MAR-66 Aircraft Maintenance Engineer Licence .. APP5-1
APPENDIX 6 Aircraft Type Practical Experience and On-the-Job Training .. APP6-1
List of Effective Pages

ISSUE 1, dated 30/Jun/2006
ISSUE 2, dated 15/Nov/2013

The following pages of MAR-66 are now current:

<table>
<thead>
<tr>
<th>Page No. :</th>
<th>Date</th>
<th>Page No. :</th>
<th>Date</th>
<th>Page No. :</th>
<th>Date</th>
<th>Page No. :</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>15/Nov/2013</td>
<td>APP1-8</td>
<td>15/Nov/2013</td>
<td>APP1-47</td>
<td>15/Nov/2013</td>
<td>APP4-2</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-2</td>
<td>15/Nov/2013</td>
<td>APP1-9</td>
<td>15/Nov/2013</td>
<td>APP1-48</td>
<td>15/Nov/2013</td>
<td>APP5-1</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-3</td>
<td>15/Nov/2013</td>
<td>APP1-10</td>
<td>15/Nov/2013</td>
<td>APP1-49</td>
<td>15/Nov/2013</td>
<td>APP5-2</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-4</td>
<td>15/Nov/2013</td>
<td>APP1-11</td>
<td>15/Nov/2013</td>
<td>APP1-50</td>
<td>15/Nov/2013</td>
<td>APP6-1</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-5</td>
<td>15/Nov/2013</td>
<td>APP1-12</td>
<td>15/Nov/2013</td>
<td>APP1-51</td>
<td>15/Nov/2013</td>
<td>APP6-2</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-6</td>
<td>15/Nov/2013</td>
<td>APP1-13</td>
<td>15/Nov/2013</td>
<td>APP1-52</td>
<td>15/Nov/2013</td>
<td>APP6-3</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-7</td>
<td>15/Nov/2013</td>
<td>APP1-14</td>
<td>15/Nov/2013</td>
<td>APP1-53</td>
<td>15/Nov/2013</td>
<td>APP6-4</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>0-8</td>
<td>15/Nov/2013</td>
<td>APP1-15</td>
<td>15/Nov/2013</td>
<td>APP1-54</td>
<td>15/Nov/2013</td>
<td>APP6-5</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-1</td>
<td>15/Nov/2013</td>
<td>APP1-16</td>
<td>15/Nov/2013</td>
<td>APP1-55</td>
<td>15/Nov/2013</td>
<td>APP6-6</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-2</td>
<td>15/Nov/2013</td>
<td>APP1-17</td>
<td>15/Nov/2013</td>
<td>APP1-56</td>
<td>15/Nov/2013</td>
<td>APP6-7</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-3</td>
<td>15/Nov/2013</td>
<td>APP1-18</td>
<td>15/Nov/2013</td>
<td>APP1-57</td>
<td>15/Nov/2013</td>
<td>APP6-8</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-4</td>
<td>15/Nov/2013</td>
<td>APP1-19</td>
<td>15/Nov/2013</td>
<td>APP1-58</td>
<td>15/Nov/2013</td>
<td>APP6-9</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-5</td>
<td>15/Nov/2013</td>
<td>APP1-20</td>
<td>15/Nov/2013</td>
<td>APP1-59</td>
<td>15/Nov/2013</td>
<td>APP6-10</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-6</td>
<td>15/Nov/2013</td>
<td>APP1-21</td>
<td>15/Nov/2013</td>
<td>APP1-60</td>
<td>15/Nov/2013</td>
<td>APP6-11</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-7</td>
<td>15/Nov/2013</td>
<td>APP1-22</td>
<td>15/Nov/2013</td>
<td>APP1-61</td>
<td>15/Nov/2013</td>
<td>APP6-12</td>
<td>15/Nov/2013</td>
</tr>
<tr>
<td>1-8</td>
<td>15/Nov/2013</td>
<td>APP1-23</td>
<td>15/Nov/2013</td>
<td>APP1-62</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-9</td>
<td>15/Nov/2013</td>
<td>APP1-24</td>
<td>15/Nov/2013</td>
<td>APP1-63</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>15/Nov/2013</td>
<td>APP1-25</td>
<td>15/Nov/2013</td>
<td>APP1-64</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>15/Nov/2013</td>
<td>APP1-26</td>
<td>15/Nov/2013</td>
<td>APP1-65</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>15/Nov/2013</td>
<td>APP1-27</td>
<td>15/Nov/2013</td>
<td>APP1-66</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>15/Nov/2013</td>
<td>APP1-28</td>
<td>15/Nov/2013</td>
<td>APP2-1</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>15/Nov/2013</td>
<td>APP1-29</td>
<td>15/Nov/2013</td>
<td>APP2-2</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>15/Nov/2013</td>
<td>APP1-30</td>
<td>15/Nov/2013</td>
<td>APP2-3</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>15/Nov/2013</td>
<td>APP1-31</td>
<td>15/Nov/2013</td>
<td>APP2-4</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>15/Nov/2013</td>
<td>APP1-32</td>
<td>15/Nov/2013</td>
<td>APP3-1</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-8</td>
<td>15/Nov/2013</td>
<td>APP1-33</td>
<td>15/Nov/2013</td>
<td>APP3-2</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-9</td>
<td>15/Nov/2013</td>
<td>APP1-34</td>
<td>15/Nov/2013</td>
<td>APP3-3</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-10</td>
<td>15/Nov/2013</td>
<td>APP1-35</td>
<td>15/Nov/2013</td>
<td>APP3-4</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-11</td>
<td>15/Nov/2013</td>
<td>APP1-36</td>
<td>15/Nov/2013</td>
<td>APP3-5</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-12</td>
<td>15/Nov/2013</td>
<td>APP1-37</td>
<td>15/Nov/2013</td>
<td>APP3-6</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>15/Nov/2013</td>
<td>APP1-38</td>
<td>15/Nov/2013</td>
<td>APP3-7</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-14</td>
<td>15/Nov/2013</td>
<td>APP1-39</td>
<td>15/Nov/2013</td>
<td>APP3-8</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-1</td>
<td>15/Nov/2013</td>
<td>APP1-40</td>
<td>15/Nov/2013</td>
<td>APP3-9</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-2</td>
<td>15/Nov/2013</td>
<td>APP1-41</td>
<td>15/Nov/2013</td>
<td>APP3-10</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-3</td>
<td>15/Nov/2013</td>
<td>APP1-42</td>
<td>15/Nov/2013</td>
<td>APP3-11</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-4</td>
<td>15/Nov/2013</td>
<td>APP1-43</td>
<td>15/Nov/2013</td>
<td>APP3-12</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-5</td>
<td>15/Nov/2013</td>
<td>APP1-44</td>
<td>15/Nov/2013</td>
<td>APP3-13</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-6</td>
<td>15/Nov/2013</td>
<td>APP1-45</td>
<td>15/Nov/2013</td>
<td>APP3-14</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP1-7</td>
<td>15/Nov/2013</td>
<td>APP1-46</td>
<td>15/Nov/2013</td>
<td>APP4-1</td>
<td>15/Nov/2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Foreword

2. Amendments are incorporated into the print text by means of a ‘Revision’ or a complete ‘Re-issue’.

3. New, amended and corrected text is indicated by a marginal line.
Preambles

ISSUE 1
30/Jun/2006

This MAR-66 was first issued on 30/Jun/2006 and became effective on 01/Aug/2006.

ISSUE 2
15/Nov/2013

- Added Category B3.
- Added aircraft groups: Group 1, Group 2 and Group 3.
- Cancelled Categories A5 and B1.5.
- Removed MAR 66.1.
- Moved MAR 66.3 Effectivity to MAR 66.2.
- Replaced MAR 66.3 by Licence Category to align with EASA Part-66.
- Transferred MAR 66.5 Definition to Section 1 Paragraph 2.
- Replaced MAR 66.5 by Aircraft Groups to align with EASA Part-66.
- Removed MAR 66.10 Applicability and replaced by Application to align with EASA Part-66.
- Removed MAR 66.13 Application and Issue.
- Amended MAR 66.20 Privileges to align with EASA Part-66.
- Added training courses and examinations results validity period.
- Amended MAR 66.30 Experience Requirement to align with EASA Part-66.
- Amended MAR 66.40 Continuity of the Aircraft Maintenance Licence to reflect a maximum 5 years renewal period.
- Added the criteria for MAR-66 holders to be not suffering from any disability likely to adversely affect their technical skill on judgement for licence renewal to MAR 66.40 Continuity of the Aircraft Maintenance Licence.
- Amended MAR 66.45 Endorsement with Aircraft Ratings to align with EASA Part-66 except for the type examination requirements.
- Replaced MAR 66.50 Medical Fitness with MAR 66.50 Limitations.
- Amended the time for presenting evidence of qualification from within a reasonable time to 24 hours to MAR 66.55 Evidence of Qualification.
- Removed the 28-day notification period and associated procedure at MAR 66.65 (a) Revocation, Suspension or Limitation of the MAR-66 Aircraft Maintenance Licence.
- Amended Section 2 to align with EASA Part-66 AMC/GM. Removed Interpretative / Explanatory Material (IEM) and some of the IEM became Guidance Material (GM) at amended Section 2.

- Amended Appendix 1 Basic Knowledge Requirements to align with EASA Part-66.

- Added Appendix 2 Basic Examination Standard to align with EASA Part-66.

- Added Appendix 3 Aircraft Type Training and Examination Standard On the Job Training to align with EASA Part-66 except for Type Examination Standard.

- Added Appendix 4 Experience Requirements for Extending a MAR-66 Aircraft Maintenance Engineer Licence to align with EASA Part-66.

- Moved Appendix 2 Sample of MAR-66 Aircraft Maintenance Engineer Licence to Appendix 5.

- Added Appendix 6 Aircraft Type Practical Experience and On-the-Job Training List of Tasks to align with EASA Part-66.

- Removed Appendix 3 Recommended Study Material.
Section 1. Requirements

1 General

This section establishes the requirements for application, issue and continuation of validity of aircraft maintenance engineer licence mentioned in the 4th Schedule of the ANRM.

2 Definition

For the purpose of this MAR-66 the following definitions shall apply:

‘AACM’ stands for Civil Aviation Authority-Macao, China.

‘ANRM’ stands for Air Navigation Regulation of Macao as published in the ‘Boletim Oficial de Macau’.

‘Aircraft maintenance engineer licence’ means a document issued as evidence of qualification confirming that the person to whom it refers has met the MAR-66 knowledge and experience requirements for any aircraft basic category and aircraft type rating specified in the document.

‘Certification’ means the issuance of a certificate of release to service.

‘Organisation procedures’ means the procedures applied by the MAR-145 approved maintenance organisation in accordance with the maintenance organisation exposition within the scope of the approval.

‘Large aircraft’ means an aircraft, classified as an aeroplane with a maximum take-off mass of more than 5700 kg, or a multi-engined helicopter.

3 Presentation

3.1 The requirements of MAR-66 are presented in full page format on loose pages, each page is identified by the date of issue and revision under which it is issued or amended.

3.2 Sub-headings are in bold typeface.

3.3 Explanatory Notes not forming part of the requirements appear in smaller typeface.

3.4 New, amended and corrected text is indicated by a marginal line.

MAR 66.2 Effectivity

(a) This MAR-66 was first issued on 30/Jun/2006 and became effective on 01/Aug/2006.

(b) After 30/Jun/2006 any person required to be approved in accordance with MAR 66.70(c) must be in compliance with this MAR-66.
MAR 66.3 Licence Categories

(See GM 66.3)

(a) Aircraft maintenance engineer licences include the following categories:

- Category A Line maintenance certifying mechanic
- Category B1 Line maintenance certifying technician – mechanical
- Category B2 Line maintenance certifying technician – avionic
- Category B3 Certifying engineer – small piston-engine aeroplane
- Category C Base maintenance certifying engineer

(b) Categories A and B1 are subdivided into subcategories relative to combinations of aeroplanes, helicopters, turbine and piston engines. These subcategories are:

- A1 and B1.1 Aeroplanes Turbine
- A2 and B1.2 Aeroplanes Piston
- A3 and B1.3 Helicopters Turbine
- A4 and B1.4 Helicopters Piston

(c) Category B3 is applicable to piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below.

MAR 66.5 Aircraft Groups

For the purpose of ratings on aircraft maintenance licences, aircraft shall be classified in the following groups:

1 Group 1: complex motor-powered aircraft as well as multiple engine helicopters, aeroplanes with maximum certified operating altitude exceeding FL290, aircraft equipped with fly-by-wire systems and other aircraft requiring an aircraft type rating when defined so by the AACM.

2 Group 2: aircraft other than those in Group 1 belonging to the following subgroups:

- sub-group 2a: single turbo-propeller engine aeroplanes
- sub-group 2b: single turbine engine helicopters
- sub-group 2c: single piston engine helicopters.

3 Group 3: piston engine aeroplanes other than those in Group 1.

MAR 66.10 Application

(See AMC 66.10)

(a) An application for an aircraft maintenance engineer licence or change to such licence shall be made on Form AACM-AW-25 and in a manner prescribed by the AACM.
(b) Each application shall be supported by documentation to demonstrate compliance with the applicable theoretical knowledge, practical training and experience requirements at the time of application.

MAR 66.15 Eligibility

An applicant for an aircraft maintenance engineer licence shall be at least 21 years of age.

MAR 66.20 Privileges

(See GM 66.20(a), (b)2 and (b)4, AMC 66.20(b)2, (b)3 and (b)5)

(a) The following privileges shall apply:

1. A category A aircraft maintenance engineer licence permits the holder to issue certificates of release to service following minor scheduled line maintenance and simple defect rectification within the limits of tasks specifically endorsed on the certification authorisation referred to in MAR 145.35. The certification privileges shall be restricted to work that the licence holder has personally performed in the maintenance organisation that issued the certification authorisation.

2. A category B1 aircraft maintenance engineer licence shall permit the holder to issue certificates of release to service and to act as B1 support staff following:
 - maintenance performed on aircraft structure, engine and mechanical and electrical system.
 - work on avionic systems requiring only simple tests to prove their serviceability and not requiring troubleshooting.

 Category B1 includes the corresponding A subcategory.

3. A category B2 aircraft maintenance engineer licence shall permit the holder:
 (i) to issue certificates of release to service and to act as B2 support staff for following:
 - maintenance performed on avionic and electrical systems, and
 - electrical and avionics tasks within engine and mechanical system, requiring only simple tests to prove their serviceability; and
 (ii) to issue certificates of release to service following minor scheduled line maintenance and simple defect rectification within the limits of tasks specifically endorsed on the certification authorisation referred to in MAR 145.35. This certification privilege shall be restricted to work that the licence holder has personally performed in the maintenance organisation which issued the certification authorisation and limited to the ratings already endorsed in the B2 licence.

 The category B2 licence does not include any A subcategory.

4. A category B3 aircraft maintenance engineer licence shall permit the holder to issue certificates of release to service and to act as B3 support staff for:
- maintenance performed on aeroplane structure, engine and mechanical and electrical systems,
- work on avionic systems requiring only simple tests to prove their serviceability and not requiring troubleshooting.

5 A category C aircraft maintenance engineer licence shall permit the holder to issue certificates of release to service following base maintenance on aircraft. The privileges apply to the aircraft in its entirety.

(b) The holder of an aircraft maintenance engineer licence may not exercise its privileges unless:

1 in compliance with the applicable requirements of ANRM and MAR-145; and

2 in the preceding 2-year period he/she has, either had 6 months of maintenance experience in accordance with the privileges granted by the aircraft maintenance engineer licence or, met the provision for the issue of the appropriate privileges; and

3 he/she has the adequate competence to certify maintenance on the corresponding aircraft; and

4 he/she is able to read, write and communicate to an understandable level in the language(s) in which the technical documentation and procedures necessary to support the issue of the certificate of release to service are written; and

5 his/her physical or mental condition is fit for exercising such privileges.

MAR 66.25 Basic Knowledge Requirements

(See AMC 66.25, GM 66.25(a))

(a) An applicant for an aircraft maintenance engineer licence, or the addition of a category or subcategory to such a licence, shall demonstrate by examination a level of knowledge in the appropriate subject modules in accordance with the Appendix 1 to MAR-66. The examination shall be conducted either by a training organisation appropriately approved in accordance with MAR-147 or by the AACM.

(b) The training courses and examinations shall be passed within 10 years prior to the application for an aircraft maintenance engineer licence or the addition of a category or subcategory to such aircraft maintenance engineer licence. Should this not be the case, examination credits may however be obtained in accordance with MAR 66.25(c).

(c) The applicant may apply to the AACM for full or partial examination credit to the basic knowledge requirements for:

1 basic knowledge examinations that do not meet the requirement described in MAR 66.25(b); and

2 any other technical qualification considered by the AACM to be equivalent to the knowledge standard of MAR-66.

(d) Credits expire 10 years after they were granted to the applicant by the AACM. The applicant may apply for new credits after expiration.
MAR 66.30 Basic Experience Requirements

(See AMC 66.30(a), (d) and (e))

(a) An applicant for an aircraft maintenance engineer licence shall have acquired:

1 for category A, subcategories B1.2 and B1.4 and category B3:

 (i) 3 years of practical maintenance experience on operating aircraft, if the applicant has no previous relevant technical training; or

 (ii) 2 years of practical maintenance experience on operating aircraft and completion of training considered relevant by the AACM as a skilled worker, in a technical trade; or

 (iii) 1 year of practical maintenance experience on operating aircraft and completion of a basic training course approved in accordance with MAR-147.

2 for category B2 and subcategories B1.1 and B1.3:

 (i) 5 years of practical maintenance experience on operating aircraft, if the applicant has no previous relevant technical training; or

 (ii) 3 years of practical maintenance experience on operating aircraft and completion of training considered relevant by the AACM as a skilled worker, in a technical trade; or

 (iii) 2 years of practical maintenance experience on operating aircraft and completion of a basic training course approved in accordance with MAR-147.

3 for category C with respect to large aircraft:

 (i) 3 years of experience exercising category B1.1, B1.3 or B2 privileges on large aircraft or as support staff according to MAR 145.35, or, a combination of both; or

 (ii) 5 years of experience exercising category B1.2 or B1.4 privileges on large aircraft or as support staff according to MAR 145.35, or a combination of both;

4 for category C with respect to other than large aircraft: 3 years of experience exercising category B1 or B2 privileges on other than large aircraft or as support staff according to MAR 145.35(a), or a combination of both;

5 for category C obtained through the academic route: an applicant holding an academic degree in a technical discipline, from a university or other higher educational institution recognised by the AACM, 3 years of experience working in a civil aircraft maintenance environment on a representative selection of tasks directly associated with aircraft maintenance including 6 months of observation of base maintenance tasks.

(b) An applicant for an extension to an aircraft maintenance engineer licence shall have a minimum civil aircraft maintenance experience requirement appropriate to the additional category or subcategory of licence applied for as defined in Appendix 4 to MAR-66.

(c) The experience shall be practical and involve a representative cross section of maintenance tasks on aircraft.

(d) At least 1 year of the required experience shall be recent maintenance experience on aircraft of the category / subcategory for which the initial aircraft maintenance engineer licence is sought. For subsequent category / subcategory additions to an existing aircraft maintenance engineer licence, the additional recent maintenance experience required may be less than 1 year, but shall be at least 3 months. The required experience shall be dependent upon the difference between
the licence category / subcategory held and applied for. Such additional experience shall be
typical of the new licence category / subcategory sought.

(e) Notwithstanding MAR 66.30(a), aircraft maintenance experience gained outside a civil aircraft
maintenance environment shall be accepted when such maintenance is equivalent to that required
by MAR-66 as established by the AACM. Additional experience of civil aircraft maintenance
shall, however, be required to ensure adequate understanding of the civil aircraft maintenance
environment.

(f) Experience shall have been acquired within the 10 years preceding the application for an aircraft
maintenance engineer licence or the addition of a category or subcategory to such a licence.

MAR 66.40 Continuity of the Aircraft Maintenance Engineer Licence

(See GM 66.40)

(a) Aircraft maintenance engineer licences and ratings will remain in force for a period specified therein
but not exceeding 5 years from the date of issue.

(b) The holder of an aircraft maintenance engineer licence shall complete the relevant parts of Form
AACM-AW-26 to the AACM.

(c) Any certification privilege based upon an aircraft maintenance engineer licence becomes invalid
as soon as the aircraft maintenance engineer licence is invalid.

(d) The aircraft maintenance engineer licence is only valid:

(i) when issued and/or changed by the AACM and

(ii) when the holder has signed the document.

(e) The MAR-66 aircraft maintenance engineer licence may be renewed on the condition that the
holder has been engaged on maintenance of an operating aircraft for not less than six months
within the preceding 24 months and is not suffering from any disability likely to adversely affect
his/her technical skill or judgment.

MAR 66.45 Endorsement with Aircraft Ratings

(See AMC 66.45(d), (d)3, (e)1 and (f)1 and GM 66.45)

(a) In order to be entitled to exercise certification privileges on a specific aircraft type, the holder of
an aircraft maintenance engineer licence need to have his/her licence endorsed with the relevant
aircraft ratings.

- For category B1, B2 or C the relevant aircraft ratings are the following:

1 For group 1 aircraft, the appropriate aircraft type rating.

2 For group 2 aircraft, the appropriate aircraft type rating, manufacturer sub-group rating
or full sub-group rating.

3 For group 3 aircraft, the appropriate aircraft type rating or full group rating.
- For category B3, the relevant rating is ‘piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below’.

- For category A, no rating is required, subject to compliance with the requirements of MAR 145.35.

(b) The endorsement of aircraft type ratings requires the satisfactory completion of the relevant category B1, B2 or C aircraft type training.

(c) In addition to the requirement of MAR 66.45(b), the endorsement of the first aircraft type rating within a given category / sub-category requires satisfactory completion of the corresponding On the Job Training, as described in Appendix 3 to MAR-66.

(d) For group 2 aircraft:

1. the endorsement of manufacturer sub-group ratings for category B1 and C licence holders requires complying with the aircraft type rating requirements of at least two aircraft types from the same manufacturer which combined are representative of the applicable manufacturer sub-group;

2. the endorsement of full sub-group ratings for category B1 and C licence holders requires complying with the aircraft type rating requirements of at least three aircraft types from different manufacturers which combined are representative of the applicable sub-group;

3. the endorsement of manufacturer sub-groups and full sub-group ratings for category B2 licence holders requires demonstration of practical experience which shall include a representative cross section of maintenance activities relevant to the licence category and to the applicable aircraft sub-group.

(e) For group 3 aircraft:

1. the endorsement of the full group 3 rating for category B1, B2 and C licence holders requires demonstration of practical experience, which shall include a representative cross section of maintenance activities relevant to the licence category and to the group 3.

2. for category B1, unless the applicant provides evidence of appropriate experience, the group 3 rating shall be subject to the following limitations, which shall be endorsed on the licence:
 - pressurised aeroplanes
 - metal structure aeroplanes
 - composite structure aeroplanes
 - wooden structure aeroplanes
 - aeroplanes with metal tubing structure covered with fabric.

(f) For the B3 licence:

1. the endorsement of the rating “piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below” requires demonstration of practical experience which shall include a representative cross-section of maintenance activities relevant to the licence category.

2. unless the applicant provides evidence of appropriate experience, the rating referred to MAR 66.45(f)(1) shall be subject to the following limitations, which shall be endorsed on the licence:
 - wooden structure aeroplanes
 - aeroplanes with metal tubing structure covered with fabric.
- metal structure aeroplanes
- composite structure aeroplanes.

MAR 66.50 Limitations

(See AMC 66.50(b))

(a) Limitations introduced on an aircraft maintenance engineer licence are exclusions from the certification privileges and affect the aircraft in its entirety.

(b) For limitations referred to in MAR 66.45, limitations shall be removed upon:

1 demonstration of appropriate experience; or

2 after appropriate training provided by the manufacturer as agreed by the AACM.

(c) For limitations referred to in MAR 66.70, limitations shall be removed upon satisfactory completion of examination on those modules / subjects defined by the AACM.

MAR 66.55 Evidence of Qualification

Personnel exercising certification privileges as well as support staff shall produced their licence, as evidence of qualification, within 24 hours upon request by an authorised person.

MAR 66.60 Equivalent Safety Cases

(See AMC 66.60)

The AACM may exempt any person, required to be qualified in accordance with MAR-66, from any requirement in MAR-66 when satisfied that a situation exists not covered by MAR-66 and subject to compliance with any supplementary condition(s) the AACM considers necessary to ensure equivalent safety. Such exemption and supplementary condition(s) must be agreed by the AACM to ensure continued recognition of the person.

MAR 66.65 Revocation, Suspension or Limitation of the MAR-66 Aircraft Maintenance Licence

The AACM may, on reasonable grounds after due enquiry, revoke, suspend or limit the MAR-66 aircraft maintenance licence or direct the MAR-145 approved maintenance organisation to revoke, suspend or limit the MAR-145 certification authorisation if the AACM is not satisfied that the holder of the licence and authorisation is a fit and proper person to hold such licence and authorisation. For the AACM to consider a person to be not a fit and proper person means that there is clear evidence that the person has knowingly carried out or been involved in one or more of the following activities:

(1) Obtained the MAR-66 aircraft maintenance licence and/or the MAR-145 certification authorisation by falsification of submitted evidence.

(2) Failed to carry out requested maintenance combined with failure to report such fact to the organisation that requested the maintenance.
(3) Failed to carry out required maintenance resulting from own inspection combined with failure to report such fact to the organisation for whom the maintenance was intended to be carried out.

(4) Negligent maintenance.

(5) Falsification of the maintenance record.

(6) The issue of a certificate of release to service knowing that the maintenance specified on the certificate of release to service has not been carried out or without verifying that such maintenance has been carried out.

(7) Carrying out maintenance or issuing a certificate of release to service when adversely affected by alcohol or drugs.

(8) Issuing certificate of release to service while not in compliance with ANRM, MAR-145 or MAR-66.

MAR 66.70 Conversion Provisions

(See AMC 66.70)

(a) Personnel authorised by the AACM to exercise certification privileges before the effective date of MAR-66 (01/Aug/2006) may continue to exercise those privileges.

(b) Personnel qualifications gained following a course of AACM approved basic or type training before the effective date of MAR-66 in accordance with Macao aviation regulations will be recognised for the purposes of certification privileges in accordance with MAR 66.70(a) only to the extent that such qualification is considered equivalent to the appropriate MAR-66 requirements.

(c) Certifying staff qualified in accordance with paragraph (a) or (b) may continue to exercise the authorisation except in the case of adding other basic categories / sub-categories of qualification to that authorisation when the appropriate additional requirements of MAR-66 will apply to such extension. Certifying staff qualified in accordance with paragraph (a) or (b) may extend the scope of their authorisation to include new aircraft types subject to compliance with MAR-66.

(d) Notwithstanding that paragraph (a), (b) and (c) personnel may continue to exercise such privileges, such personnel must be issued a MAR-66 aircraft maintenance licence based upon the accepted qualification without further examination. The MAR-66 aircraft maintenance licence may contain technical limitations in relation to MAR-66 where not appropriately qualified but does not change any existing certification privileges. Technical limitations will be deleted, as appropriate, when the person satisfactorily sits the relevant examination defined by AACM.
Section 2. Acceptable Means of Compliance / Guidance Material
(AMC & GM)

1 General

1.1 This Section contains Acceptable Means of Compliance and Guidance Material that has been agreed for inclusion in MAR-66.

1.2 Where a particular MAR paragraph does not have an Acceptable Means of Compliance or any Guidance Material, it is considered that no supplementary material is required.

2 Presentation

2.1 The Acceptable Means of Compliance and Guidance Material are presented in full page width on loose pages, each page being identified by the date of issue or the issue / revision number under which it is issued or amended.

2.2 A numbering system has been used in which the Acceptable Means of Compliance or Guidance Material uses the same number as the MAR paragraph to which it refers. The number is introduced by the letters AMC or GM to distinguish the material from the MAR itself.

2.3 The acronyms AMC and GM also indicate the nature of the material and for this purpose the two types of material are defined as follows:

Acceptable Means of Compliance (AMC) illustrate a means, or several alternative means, but not necessarily the only possible means by which a requirement can be met. It should however be noted that where a new AMC is developed, any such AMC (which may be additional to an existing AMC) will be amended into the document.

Guidance Material (GM) helps to illustrate the meaning of a requirement.

2.4 Explanatory Notes not forming part of the AMC or GM text appear in a smaller typeface.

2.5 New, amended or corrected text is indicated by a marginal line.

GM 66.3 Licence Categories

(See MAR 66.3)

Individual aircraft maintenance engineer licence holders need not be restricted to a single category. Provided that each qualification requirement is satisfied, any combination of categories may be granted.

AMC 66.10 Application

(See MAR 66.10)

1 Maintenance experience should be written up in a manner that the reader has a reasonable understanding of where, when and what maintenance constitutes the experience. A task-by-task account is not necessary but at the same time a blank statement “X years maintenance experience
completed” is not acceptable. A logbook of maintenance experience is desirable. It is acceptable to cross-refer in the application form to other documents containing information on maintenance.

2 Applicants claiming the maximum reduction in MAR 66.30(a) total experience based upon successful completion of MAR 147 approved basic training should include the MAR-147 certificate of recognition for approved basic training.

3 Applicant claiming reduction in MAR 66.30(a) total experience based upon successful completion of technical training in an organisation or institute recognised by the AACM as a competent organisation or institute should include the relevant certificate of successful completion of training.

GM 66.20(a) Privileges

(See MAR 66.20(a))

1 The following definitions apply:

Electrical system means the aircraft electrical power supply source, plus the distribution system to the different components contained in the aircraft and relevant connectors. Lighting systems are also included in this definition. When working on cables and connectors which are part of these electrical systems, the following typical practices are included in the privileges:

- Continuity, insulation and bonding techniques and testing;
- Crimping and testing of crimped joints;
- Connector pin removal and insertion;
- Wiring protection techniques.

Avionics system means an aircraft system that transfers, processes, displays or stores analogue or digital data using data lines, data buses, coaxial cables, wireless or other data transmission medium, and includes the system’s components and connectors. Examples of avionics systems include the following:

- Autoflight;
- Communication, Radar and Navigation;
- Instruments (see NOTE below);
- In-Flight Entertainment Systems;
- Integrated Modular Avionics (IMA);
- On-Board Maintenance Systems;
- Information Systems;
- Fly-by-Wire Systems (related to ATA27 “Flight Controls”);
- Fibre Optic Control Systems.
NOTE: Instruments are formally included in the privileges of the B2 licence holders. However, maintenance on electromechanical and pitot-static components may also be released by a B1 licence holder.

Simple test means a test described in approved maintenance data and meeting all the following criteria:

- The serviceability of the system can be verified using aircraft controls, switches, Built-in Test Equipment (BITE), Central Maintenance Computer (CMC) or external test equipment not involving special training.
- The outcome of the test is a unique go-no go indication or parameter, which can be a single value or a value within an interval tolerance. No interpretation of the test result or interdependence of different values is allowed.
- The test does not involve more than 10 actions as described in the approved maintenance data (not including those required to configure the aircraft prior to the test, i.e. jacking, flaps down, etc., or to return the aircraft to its initial configuration). Pushing a control, switch or button, and reading the corresponding outcome may be considered as a single step even if the maintenance data show them separated.

Troubleshooting means the procedures and actions necessary to identify the root cause of a defect or malfunction using approved maintenance data. It may include the use of BITE or external test equipment.

Line maintenance means any maintenance that is carried out before flight to ensure that the aircraft is fit for the intended flight. It may include:

- trouble shooting;
- defect rectification;
- component replacement with the use of external test equipment, if required. Component replacement may include components such as engines and propellers;
- scheduled maintenance and/or checks including visual inspections that will detect obvious unsatisfactory conditions / discrepancies but do not require extensive in-depth inspection. It may also include internal structure, systems and engines items which are visible through quick opening access panels / doors;
- minor repairs and modifications which do not require extensive disassembly and can be accomplished by simple means;
- for temporary or occasional cases (Airworthiness Directives, hereinafter AD; service bulletins, hereinafter SB) the quality manager may accept base maintenance tasks to be performed by a line maintenance organisation provided all requirements are fulfilled. The AACM will prescribe the conditions under these tasks may be performed.

Base Maintenance means any task falling outside the criteria are given above the Line Maintenance.

NOTE: Aircraft maintained in accordance with “progressive” type programmes need to be individually assess in relation to this paragraph. In principle, the decision to allow some “progressive” checks to be carried out is determined by the assessment that all tasks within the particular check can be carried out safely to the required standards at the designated line maintenance station.

The category B3 licence does not include any A subcategory. Nevertheless, this does not prevent the B3 licence holder from releasing maintenance tasks typical of the A2 subcategory for piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below, within the limitations contained in the B3 licence.
3 The category C licence permits certification of scheduled base maintenance by the issue of a single certificate of release to service for the complete aircraft after the completion of all such maintenance. The basis for this certification is that the maintenance has been carried out by competent mechanics and category B1, B2, and B3 support staffs, as appropriate, have signed for the maintenance tasks under their respective specialisation. The principal function of the category C certifying staff is to ensure that all required maintenance has been called up and signed off by the category B1, B2, and B3 support staff, as appropriate, before issue of the certificate of release to service. Only category C personnel who also hold category B1, B2, or B3 qualifications may perform both roles in base maintenance.

AMC 66.20(b)2 Privileges

(See MAR 66.20(b)2)

The 6 months maintenance experience in 2 years should be understood as consisting of two elements: duration and nature of the experience. The minimum to meet the requirements for these elements may vary depending on the size and complexity of the aircraft and type of operation and maintenance.

1 Duration:

Within an approved maintenance organisation:

- 6 months working within the same organisation; or

- 6 months split up into different blocks, working within the same or in different organisations.

The 6-month period can be replaced by 100 days of maintenance experience in accordance with the privileges, whether they have been performed within an approved organisation, or as independent certifying staff, or as a combination thereof.

For independent certifying staff not working under an approved organisation, in certain circumstances this number of days may even be reduced by 50% when agreed in advance by the AACM. These circumstances consider the cases where the licence holder happens to be the owner of an aircraft and carries out maintenance on his own aircraft, or where a licence holder maintains an aircraft operated for low utilisation, that does not allow the licence holder to accumulate the required experience. This reduction should not be combined with the 20% reduction permitted when carrying out technical support, or maintenance planning, continuing airworthiness management or engineering activities. To avoid a too long period without experience, the working days should be spread over the intended 6-month period.

2 Nature of the experience:

Depending on the category of the aircraft maintenance engineer licence, the following activities are considered relevant for maintenance experience:

- Servicing;
- Inspection;
- Operational and functional testing;
- Troubleshooting;
- Repairing;
- Modifying;
- Changing component;
- Supervising these activities;
- Releasing aircraft to service.

For category A licence holders, the experience should include exercising the privileges, by means of performing tasks related to the authorisation on at least one aircraft type for each licence subcategory. This means tasks as mentioned in AMC 145.30(g), including servicing, component changes and simple defect rectifications.

For category B1, B2 and B3, for every aircraft type rating included in the authorisation the experience should be on that particular aircraft or on a similar aircraft within the same licence (sub)category. Two aircraft can be considered as similar when they have similar technology, construction and comparable systems, which means equipped with the following (as applicable to the licence category):

- Propulsion systems (piston, turboprop, turbofan, turboshaft, jet-engine or push propellers); and
- Flight control systems (only mechanical controls, hydromechanically powered controls or electromechanically powered controls); and
- Avionic systems (analogue systems or digital systems); and
- Structure (manufactured of metal, composite or wood).

For licences endorsed with (sub)group ratings:

- In the case of a B1 licence endorsed with (sub)group ratings (either manufacturer subgroup or full (sub)group) as defined in MAR 66.45, the holder should show experience on at least one aircraft type per (sub)group and per aircraft structure (metal, composite or wood).
- In the case of a B2 licence endorsed with (sub)group ratings (either manufacturer subgroup or full (sub)group) as defined in MAR 66.45, the holder should show experience on at least one aircraft type per (sub)group.
- In the case of a B3 licence endorsed with the rating “piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below” as defined in MAR 66.45, the holder should show experience on at least one aircraft type per aircraft structure (metal, composite or wood).

For category C, the experience should cover at least one of the aircraft types endorsed on the licence.

For a combination of categories, the experience should include some activities of the nature shown in paragraph 2 in each category.

A maximum of 20% of the experience duration required may be replaced by the following relevant activities on an aircraft type of similar technology, construction and with comparable systems:

- Aircraft maintenance related training as an instructor / assessor or as a student;
- Maintenance technical support / engineering;
- Maintenance management / planning.

The experience should be documented in an individual logbook or in any other recording system (which may be an automated one) containing the following data:

- Date;
- Aircraft type;
- Aircraft identification, i.e. registration;
- ATA Chapter (optional);
- Operation performed i.e. 100 FH check, MLG wheel change, engine oil check and complement, SB embodiment, troubleshooting, structural repair, STC embodiment…;
- Type of maintenance, i.e. base, line;
- Type of activity, i.e. perform, supervise, release;
- Category used: A, B1, B2, B3, or C;
- Duration in days or partial-days.

GM 66.20(b)2 Privileges

(See MAR 66.20(b)2)

The sentence “met the provision for the issue of the appropriate privileges” included in MAR 66.20(b)2 means that during the previous 2 years the person has met all the requirements for the endorsement of the corresponding aircraft rating (for example, in the case of aircraft in Group 1, theoretical plus practical element plus, if applicable, on-the-job training). This supersedes the need for 6 months of experience for the first 2 years. However, the requirement of 6 months of experience in the preceding 2 years will need to be met after the second year.

AMC 66.20(b)3 Privileges

(See MAR 66.20(b)3)

The wording “has the adequate competence to certify maintenance on the corresponding aircraft” means that the licence holder and, if applicable, the organisation where he/she is contracted / employed, should ensure that he/she has acquired to appropriate knowledge, skills, attitude and experience to release the aircraft being maintained. This is essential because some systems and technology present in the particular aircraft being maintained may not have been covered by the training / examination / experience required to obtain the licence and ratings.

This is typically the case, among others, in the following situations:

- Work being carried out on a model / variant for which the technical design and maintenance techniques have significantly evolved from the original model used in the type training / on-the-job training.
- Specific technology and options selected by each customer which may not have been covered by the type training / on-the-job training.
- Changes in the basic knowledge requirements Appendix 1 to MAR-66 not requiring re-examination of existing licence holders (grandfathered privileges).
- The endorsement of group / subgroup ratings based on experience on a representative number of tasks / aircraft or based on type training on a representative number of aircraft.
• Persons meeting the requirements of 6 months of experience every 2 years only on certain similar aircraft types as allowed by AMC 66.20(b)2.

• Persons holding a MAR-66 licence with limitations, obtained through conversion of qualifications gained before the effective date of MAR-66 (MAR 66.70), where such limitations are going to be lifted after performing the corresponding basic knowledge examinations. In this case, the type ratings endorsed in the licence may have been obtained in the previous system without covering all the aircraft systems (because of the previous limitations) and there will be a need to assess and, if applicable, to train this person on the missing systems.

Additional information is provided in AMC 145.35(a).

GM 66.20(b)4 Privileges

(See MAR 66.20(b)4)

1 Holders of a MAR-66 aircraft maintenance engineer licence may only exercise certification privileges when they have a general knowledge of the language used within the maintenance environment including knowledge of common aeronautical terms in the language. The level of knowledge should be such that the licence holder is able to:

- read and understand the instructions and technical manuals used for the performance of maintenance;
- make written technical entries and any maintenance documentation entries, which can be understood by those with whom they are normally required to communicate;
- read and understand the maintenance organisation procedures;
- communicate at such a level as to prevent any misunderstanding when exercising certification privileges.

2 In all cases, the level of understanding should be compatible with the level of certification privileges exercised.

AMC 66.20(b)5 Privileges

(See MAR 66.20(b)5)

1 Medical opinion considers that alcohol present in the blood stream in any quantity affects the ability to make decisions. It is the responsibility of all certifying staff to ensure that they are not adversely affected.

2 The use of any legally administered drug, or medicines, including those used for the treatment of a disease or disorder, which has been shown to exhibit adverse side effects, which affect the decision making ability of the user, should be administered according to medical advice. No other drugs should be used.

3 Certifying staff are responsible for ensuring that their physical condition does not adversely affect their ability to satisfactorily certify the work for which they are responsible. Eyesight, including, where applicable, colour vision, is particularly important in this respect.
4 In the context of this MAR, mental condition means psychological integrity, particularly in operational attitudes or any relevant personality factor.

AMC 66.25 Basic Knowledge Requirements

(See MAR 66.25)

1 For an applicant being a person qualified by holding an academic degree in an aeronautical, mechanical or electronic discipline from a recognised university or other higher educational institute, the need for any examination depends upon the course taken in relation to Appendix 1 to MAR-66.

2 Knowledge gained and examinations passed during previous experiences, for example, in military aviation and civilian apprenticeships may be credited where the AACM is satisfied that such knowledge and examinations are equivalent to that required by Appendix 1 to MAR-66.

GM 66.25(a) Basic Knowledge Requirements

(See MAR 66.25(a))

The levels of knowledge for each licence (sub)category are directly related to the complexity of the certifications related to the corresponding licence (sub)category, which means that category A should demonstrate a limited but adequate level of knowledge, whereas category B1, B2, and B3 should demonstrate a complete level of knowledge in the appropriate subject modules.

AMC 66.30(a) Basic Experience Requirements

(See MAR 66.30(a))

1 For a category C applicant holding an academic degree the representative selection of tasks should include the observation of hangar maintenance, maintenance planning, quality assurance, record-keeping, approved spare parts control and engineering development.

2 While an applicant for a category C licence may be qualified by having 3 years experience as category B1 or B2 certifying staff only in line maintenance, it is however recommended that any applicant for a category C holding a B1 or B2 licence demonstrate at least 12 months experience as a B1 or B2 support staff.

3 A skilled worker is a person who has successfully completed a training acceptable to the AACM and involving the manufacture, repair, overhaul or inspection of mechanical, electrical or electronic equipment. The training would include the use of tools and measuring devices.

4 Maintenance experience on operating aircraft:

- Means the experience of being involved in maintenance tasks on aircraft which are being operated by airlines, air taxi organisations, owners, etc.;

- Should cover a wide range of tasks in length, complexity and variety;

- Aims at gaining sufficient experience in the real environment of maintenance as opposed to only the training school environment;
- May be gained within different types of maintenance organisations or under the supervision of independent certifying staff;

- May be combined with MAR-147 approved training so that periods of training can be intermixed with periods of experience, similar to an apprenticeship.

AMC 66.30(d) Basic Experience Requirements

(See MAR 66.30(d))

To be considered as recent experience, at least 50% of the required 12 month recent experience should be gained within the 12-month period prior to the date of application for the aircraft maintenance engineer licence. The remainder of the recent experience should have been gained within the 7-year period prior to application. It must be noted that the rest of the basic experience required by MAR 66.30 must be obtained within the 10 years prior to the application as required by MAR 66.30(f).

AMC 66.30(e) Basic Experience Requirements

(See MAR 66.30(e))

1. For category A the additional experience of civil aircraft maintenance should be a minimum of 6 months. For category B1, B2, or B3 the additional experience of civil aircraft maintenance should be a minimum of 12 months.

2. Aircraft maintenance experience gained outside a civil aircraft maintenance environment may include aircraft maintenance experience gained in armed forces, coast guards, police, etc., or in aircraft manufacturing.

GM 66.40 Continuity of the Aircraft Maintenance Engineer Licence

(See MAR 66.40)

1. The AACM will issue the MAR-66 aircraft maintenance licence with a five years renewal period included but the licence holder remains responsible for making application for renewal to the AACM by completing the relevant application form. Licence will normally be renewed provided that compliance to MAR 66.40(e) can be established. Application for renewal will not be accepted more than 2 months before expiry of the licence.

2. Where a licence holder is unable to show the six-month experience but has been involved actively for the same minimum period in matters concerned with aircraft maintenance (e.g. As a quality engineer, quality manager, an aeronautical engineering instructor or as a flight engineer) consideration will be given to renewing the licence.

3. The MAR-145 approved maintenance organisation issues the MAR-145 certification authorisation when satisfied that compliance has been established with the appropriate paragraphs of MAR-145 and MAR-66. In granting the MAR-145 certification authorisation the MAR-145 approved maintenance organisation needs to be satisfied that the person holds a valid MAR-66 aircraft maintenance licence and may need to confirm such fact with the AACM. With regard to continued validity of the MAR-145 certification authorisation due regard should be given to the currency of maintenance experience and training in accordance with MAR-145.
AMC 66.45(d) Endorsement with Aircraft Ratings

(See MAR 66.45(d))

1. For the granting of manufacturer subgroup ratings for Group 2 aircraft, for B1 and C licence holders, the sentence “at least two aircraft types from the same manufacturer which combined are representative of the applicable manufacturer subgroup” means that the selected aircraft types should cover all the technologies relevant to the manufacturer subgroup in the following areas:

 - Flight control systems (mechanical controls / hydromechanically powered controls / electromechanically powered controls); and
 - Avionic systems (analogue systems / digital systems); and
 - Structure (manufactured of metal / composite / wood).

In cases where there are very different aircraft types within the same manufacturer subgroup, it may be necessary to cover more than two aircraft types to ensure adequate representation.

For this purpose it may be possible to use aircraft types from the same manufacturer classified in Group 1 as long as the selected aircraft belong to the same licence subcategory for which the rating will be endorsed.

2. For the granting of full subgroup ratings for Group 2 aircraft, for B1 and C licence holders, the sentence “at least three aircraft types from different manufacturers which combined are representative of the applicable subgroup” means that the selected aircraft types should cover all the technologies relevant to the manufacturer subgroup in the following areas:

 - Flight control systems (mechanical controls / hydromechanically powered controls / electromechanically powered controls); and
 - Avionic systems (analogue systems / digital systems); and
 - Structure (manufactured of metal / composite / wood).

In cases where there are very different aircraft types within the same subgroup, it may be necessary to cover more than three aircraft types to ensure adequate representation.

For this purpose it may be possible to use aircraft types from different manufacturers classified in Group 1 as long as the selected aircraft belong to the same licence subcategory for which the rating will be endorsed.

3. For manufacturer subgroup ratings, the term “manufacturer” means the TC holder defined in the certification data sheet.

 In the case of an aircraft rating where the type rating refers to a TC holder made of a combination of two manufacturers which produce a similar aircraft (i.e. AUGSTA/BELL HELICOPTER TEXTRON or any case of aircraft similarly built by another manufacturer), this combination should be considered as one manufacturer.

 As a consequence:

 • When a licence holder gets a manufacturer type or a manufacturer subgroup rating made of a combination of manufacturers, it covers the combination of such manufacturers.
 • When a licence holder who intends to endorse a full subgroup rating selects three aircraft from different manufacturers, this means from different combinations of manufacturers as applicable.
AMC 66.45 (d)3, (e)1 and (f)1 Endorsement with Aircraft Ratings

(See MAR 66.45(d)3, (e)1 and (f)1)

1 The “practical experience” should cover a representative cross section including at least 50% of tasks contained in Appendix 6 to MAR-66 relevant to the licence category and to the applicable aircraft type ratings or aircraft (sub)group ratings being endorsed. This experience should cover tasks from each paragraph of the Appendix 6 list. Other tasks than those in the Appendix 6 may be considered as a replacement when they are relevant. In the case of (sub)group ratings, this experience may be shown by covering one or several aircraft types of the applicable (sub)group and may include experience on aircraft classified in group 1, 2 and/or 3 as long as the experience is relevant. The practical experience should be obtained under the supervision of authorised certifying staff.

2 In the case of endorsement of individual type ratings for Group 2 and Group 3 aircraft, for the second aircraft type of each manufacturer (sub)group the practical experience should be reduced to 30% of the tasks contained in Appendix 6 to MAR-66 relevant to the licence category and to the applicable aircraft type. For subsequent aircraft types of each manufacturer (sub)group this should be reduced to 20%.

3 Practical experience should be demonstrated by the submission of records or a logbook showing the Appendix 6 tasks performed by the applicant. Typical data to be recorded are similar to those described in AMC 66.20(b)2.

GM 66.45 Endorsement with Aircraft Ratings

(See MAR 66.45)

The following table shows a summary of the aircraft rating requirements contained in MAR 66.45, MAR 66.50 and Appendix 3 to MAR-66.

The table contains the following:

- The different aircraft groups;
- For each licence (sub)category, which ratings are possible (at the choice of the applicant):
 - Individual type ratings;
 - Full and/or Manufacturer (sub)group ratings;
- For each rating option, which are the qualification options;
- For the B1.2 licence (Group 3 aircraft) and for the B3 licence (piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below), which are the possible limitations to be included in the licence if not sufficient experience can be demonstrated in those areas.
Note: OJT means “On-the-Job Training” (Appendix 3 to MAR-66, Section 5) and is only required for the first aircraft rating in the licence (sub)category.

<table>
<thead>
<tr>
<th>Aircraft rating requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Groups</td>
</tr>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>- Complex motor-powered aircraft.</td>
</tr>
<tr>
<td>- Multiple engine helicopters.</td>
</tr>
<tr>
<td>- Aeroplanes certified above FL290.</td>
</tr>
<tr>
<td>- Aircraft equipped with fly-by-wire.</td>
</tr>
<tr>
<td>- Other aircraft when defined by the AACM.</td>
</tr>
</tbody>
</table>

Group 2:			
Subgroups:			
2a: single turboprop aeroplanes (*)	Individual TYPE RATING type training + OJT	Individual TYPE RATING type training + OJT	Individual TYPE RATING type training
2b: single turbine engine helicopters (*)	Full SUBGROUP RATING type training + OJT on at least 3 aircraft representative of that subgroup	Full SUBGROUP RATING type training on at least 3 aircraft representative of that subgroup	Full SUBGROUP RATING type training
2c: single piston-engine helicopters (*)	Manufacturer SUBGROUP RATING type training + OJT on at least 2 aircraft representative of that manufacturer subgroup	Manufacturer SUBGROUP RATING type training on at least 2 aircraft representative of that manufacturer subgroup	Manufacturer SUBGROUP RATING type training
(*) Except those classified in Group 1.			

Group 3			
Piston-engine aeroplanes (except those classified in Group 1)	Individual TYPE RATING type training + OJT	Individual TYPE RATING type training + OJT	Individual TYPE RATING type training
	Full GROUP 3 RATING based on demonstration of practical experience	Full GROUP 3 RATING based on demonstration of practical experience	Full GROUP 3 RATING based on demonstration of practical experience
Limitations:			
- Pressurised aeroplanes			
- Metal aeroplanes			
- Composite aeroplanes			
- Wooden aeroplanes			
- Metal tubing & fabric aeroplanes			

Piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below	FULL RATING “Piston-engine non-pressurised aeroplanes of 2,000 kg MTOM and below” based on demonstration of practical experience	Not Applicable	Not Applicable
Limitations:			
- Metal aeroplanes			
- Composite aeroplanes			
- Wooden aeroplanes			
- Metal tubing & fabric aeroplanes			
AMC 66.50(b) Limitations

(See MAR 66.50(b))

1. The appropriate experience required to remove the limitations referred to in MAR 66.45(e) and (f) should consist of the performance of a variety of tasks appropriate to the limitations under the supervision of authorised certifying staff. This should include the tasks required by a scheduled annual inspection. Alternatively, this experience may also be gained, if agreed by the AACM, by theoretical and practical training provided by the manufacturer, as long as an assessment is further carried out and recorded by this manufacturer.

2. It may be acceptable to have this experience on just one aircraft type, provided that this type is representative of the (sub)group in relation to the limitation being removed.

3. The application for the limitation removal should be supported by a record of experience signed by the authorised certifying staff or by an assessment signed by the manufacturer after completion of the applicable theoretical and practical training.

AMC 66.60 Equivalent Safety Cases

(See MAR 66.60)

All proposed equivalent safety cases should be agreed in principal with AACM before submission to the AACM for consideration as an acceptable case.

AMC 66.70 Conversion Provisions

(See MAR 66.70)

1. Certification authorisations or qualifications held in accordance with MAR 66.70(a), (b), or (c) are recognised to allow the continuation of previously held certification privileges that do not meet the full requirements of MAR-66. Such previously held certification privileges may continue to be used without any change in scope or limitation as permitted by the pre MAR-66 Macao aviation regulations. It should be noted that holders of such AACM issued authorisations or qualifications may transfer such rights between MAR-145 approved maintenance organisations within Macao SAR.

2. In the case of certifying staff qualified in accordance with MAR 66.70(a) or (b) and who wish to add additional aircraft types and/or tasks as permitted by MAR 66.70(c) within existing basic categories or sub-categories, the type and/or task qualification requirements of the MAR-66 will apply.

3. In the case of certifying staff qualified in accordance with MAR 66.70(a) or (b) and who wish to extend their qualifications as permitted by MAR 66.70(c) by adding other basic categories or sub-categories, the relevant additional requirements of MAR-66 will apply. Such individuals will be expected to pass a course of approved training under MAR-147 and/or examinations in the additional subject modules / sub-modules.

4. Personnel holding pre MAR-66 qualifications in accordance with paragraphs MAR 66.70(a) or (b) will be granted a MAR-66 aircraft maintenance licence per MAR 66.70(d) in the appropriate category or sub-category without further examination except that such licence will contain limitations in relation to any technical subject outside the established knowledge of the particular
person. For example, a person may hold a pre MAR-66 licence or authorisation limited to the release of the airframe and engine but not the electrical power system because the person has not taken or passed the examination on electrical systems. This means that the person would be issued with a MAR-66 aircraft maintenance licence in the B1 category with a limitation that it does not include electrical power systems. The result is that the person retains all existing certification privileges but has a limitation in relation to the MAR-66 subjects. It should be realised that such a limitation will not benefit the holder in the longer term as more ‘fully’ qualified personnel become available.

5 Personnel holding pre MAR-66 qualifications in accordance with MAR 66.70(a) or (b) who wish to transfer such qualification into a MAR-66 aircraft maintenance licence without the limitations of paragraph (4) will need to pass an examination on any MAR-66 subject deemed by the AACM to be not covered by the pre MAR-66 qualification in relation to the appropriate category or sub-category being sought.
Appendix 1

Basic Knowledge Requirements

1 Knowledge levels for Category A, B1, B2, B3 and C Aircraft Maintenance Engineer Licence

Basic knowledge for categories A, B1, B2, and B3 are indicated by knowledge levels (1, 2, or 3) against each applicable subject. Category C applicants shall meet either the category B1 or the category B2 basic knowledge levels.

The knowledge level indicators are defined on 3 levels as follows:

- **LEVEL 1: A familiarisation with the principal elements of the subject.**

 Objectives:

 (a) The applicant should be familiar with the basic elements of the subject.

 (b) The applicant should be able to give a simple description of the whole subject, using common words and examples.

 (c) The applicant should be able to use typical terms.

- **LEVEL 2: A general knowledge of the theoretical and practical aspects of the subject and an ability to apply that knowledge.**

 Objectives:

 (a) The applicant should be able to understand the theoretical fundamentals of the subject.

 (b) The applicant should be able to give a general description of the subject using, as appropriate, typical examples.

 (c) The applicant should be able to use mathematical formulae in conjunction with physical laws describing the subject.

 (d) The applicant should be able to read and understand sketches, drawings and schematics describing the subject.

 (e) The applicant should be able to apply his/her knowledge in a practical manner using detailed procedures.

- **LEVEL 3: A detailed knowledge of the theoretical and practical aspects of the subject and a capacity to combine and apply the separate elements of knowledge in a logical and comprehensive manner.**

 Objectives:

 (a) The applicant should know the theory of the subject and interrelationships with other subjects.

 (b) The applicant should be able to give a detailed description of the subject using theoretical fundamentals and specific examples.
(c) The applicant should understand and be able to use mathematical formulae related to the subject.

(d) The applicant should be able to read, understand and prepare sketches, simple drawings and schematics describing the subject.

(e) The applicant should be able to apply his knowledge in a practical manner using manufacturer’s instructions.

(f) The applicant should be able to interpret results from various sources and measurements and apply corrective action where appropriate.

2 Modularisation

Qualification on basic subjects for each aircraft maintenance engineer licence category or subcategory should be in accordance with the following matrix, where applicable subjects are indicated by an “X”:

<table>
<thead>
<tr>
<th>Subject module</th>
<th>A or B1 aeroplane with:</th>
<th>A or B1 helicopter with:</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turbine engine(s)</td>
<td>Piston engine(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7B</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9B</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17A</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17B</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
MODULE 1. MATHEMATICS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Arithmetic</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Arithmetical terms and signs, methods of multiplication and division, fractions and decimals, factors and multiples, weights, measures and conversion factors, ratio and proportion, averages and percentages, areas and volumes, squares, cubes, square and cube roots.

1.2 Algebra

(a) Evaluating simple algebraic expressions, addition, subtraction, multiplication and division, use of brackets, simple algebraic fractions;
(b) Linear equations and their solutions;
 - Indices and powers, negative and fractional indices;
 - Binary and other applicable numbering systems;
 - Simultaneous equations and second degree equations with one unknown;
 - Logarithms.

1.3 Geometry

(a) Simple geometrical constructions;
(b) Graphical representation; nature and uses of graphs, graphs of equations / functions;
(c) Simple trigonometry; trigonometrical relationships, use of tables and rectangular and polar coordinates.

MODULE 2. PHYSICS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Matter</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Nature of matter: the chemical elements, structure of atoms, molecules;
Chemical compounds;
States: solid, liquid and gaseous;
Changes between states.

2.2 Mechanics

2.2.1 Statics | 1 | 2 | 1 | 1 |

Forces, moments and couples, representation as vectors;
<table>
<thead>
<tr>
<th>Centre of gravity;</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B1</td>
</tr>
<tr>
<td>Elements of theory of stress, train and elasticity: tension, compression, shear and torsion;</td>
<td></td>
</tr>
<tr>
<td>Nature and properties of solid, fluid and gas;</td>
<td></td>
</tr>
<tr>
<td>Pressure and buoyancy in liquids (barometers).</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.2 *Kinetics*

Linear movement: uniform motion in a straight line, motion under constant acceleration (motion under gravity);
Rotational movement: uniform circular motion (centrifugal / centripetal forces);
Periodic motion: pendular movement;
Simple theory of vibration, harmonics and resonance;
Velocity ratio, mechanical advantage and efficiency.

2.2.3 *Dynamics*

(a) Mass:
Force, inertia, work, power, energy (potential, kinetic and total energy), heat, efficiency;
Impulse;
Gyroscopic principles;
Friction: nature of effects, coefficient of friction (rolling resistance).

2.2.4 *Fluid dynamics*

(a) Specific gravity and density;
(b) Viscosity, fluid resistance, effects of streamlining;
Effects of compressibility of fluids;
Static, dynamic and total pressure: Bernoulli’s Theorem, venture.

2.3 *Thermodynamics*

(a) Temperature: thermometers and temperature scales: Celsius, Fahrenheit and Kelvin; Heat definition;
(b) Heat capacity, specific heat:
Heat transfer: convection, radiation and conduction;
Volumetric expansion;
First and second law of thermodynamics;
Gases: ideal gases laws; specific heat at constant volume and constant pressure, work done by expanding gas;
Isothermal, adiabatic expansion and compression, engine cycles, constant volume and constant pressure, refrigerators and heat pumps;
Latent heats of fusion and evaporation, thermal energy, heat of combustion.

2.4 Optics (Lights)
Nature of light; speed of light;
Laws of reflection and refraction; reflection at plane surfaces, reflection by spherical mirrors, refraction, lenses;
Fibre optics.

2.5 Wave Motion and Sound
Wave motion: mechanical waves, sinusoidal wave motion, interference phenomena, standing waves;
Sound: speed of sound, production of sound, intensity, pitch and quality, Doppler effect.

MODULE 3. ELECTRICAL FUNDAMENTALS

3.1 Electron Theory
Structure and distribution of electrical charges within: atoms, molecules, ions, compounds;
Molecular structure of conductors, semiconductors and insulators.

3.2 Static Electricity and Conduction
Static electricity and distribution of electrostatic charges;
Electrostatic laws of attraction and repulsion;
Units of charge, Coulomb’s Law;
Conduction of electricity in solids, liquids, gases and a vacuum.

3.3 Electrical Terminology
The following terms, their units and factors affecting them: potential difference, electromotive force, voltage, current, resistance, conductance, charge, conventional current flow, electron flow.

3.4 Generation of Electricity
Production of electricity by the following methods: light, heat, friction, pressure, chemical action, magnetism and motion.
<table>
<thead>
<tr>
<th>3.5 DC Sources of Electricity</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction and basic chemical action of: primary cells, secondary cells, lead acid cells, nickel cadmium cells, other alkaline cells;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cells connected in series and parallel;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal resistance and its effect on a battery;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction, materials and operation of thermocouples;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of photo-cells.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.6 DC Circuits</th>
<th>-</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohms Law, Kirchoff’s Voltage and Current Laws;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculations using the above laws to find resistance, voltage and current;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance of the internal resistance of a supply.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.7 Resistance / Resistor</th>
<th>-</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Resistance and affecting factors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific resistance;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistor colour code, values and tolerances, preferred values, wattage ratings;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistors in series and parallel;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation of total resistance using series, parallel and series parallel combinations;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation and use of potentiometers and rheostats;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of Wheatstone Bridge;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Positive and negative temperature coefficient conductance;</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Fixed resistors, stability, tolerance and limitations, methods of construction;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable resistors, thermistors, voltage dependent resistors;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of potentiometers and rheostats;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of Wheatstone Bridge.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.8 Power</th>
<th>-</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, work and energy (kinetic and potential);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipation of power by a resistor;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power formula;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculations involving power, work and energy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.9 Capacitance / Capacitor</th>
<th>-</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation and function of a capacitor;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factors affecting capacitance area of plates, distance between plates,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>A</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

number of plates, dielectric and dielectric constant, working voltage, voltage rating;
Capacitor types, construction and function;
Capacitor colour coding;
Calculations of capacitance and voltage in series and parallel circuits;
Exponential charge and discharge of a capacitor, time constants;
Testing of capacitors.

3.10 Magnetism

(a) Theory of magnetism;

- Properties of a magnet;
- Action of a magnet suspended in the Earth’s magnetic field;
- Magnetisation and demagnetisation;
- Magnetic shielding;
- Various types of magnetic material;
- Electromagnets construction and principles of operation;
- Hand clasp rules to determine: magnetic field around current carrying conductor;

(b) Magnetomotive force, field strength, magnetic flux density, permeability, hysteresis loop, retentivity, coercive force reluctance, saturation point, eddy currents;

- Precautions for care and storage of magnets.

3.11 Inductance / Inductor

- Faraday’s Law;
- Action of inducing a voltage in a conductor moving in a magnetic field;
- Induction principles;
- Effects of the following on the magnitude of an induced voltage: magnetic field strength, rate of change of flux, number of conductor turns;
- Mutual induction;
- The effect the rate of change of primary current and mutual inductance has on induced voltage;
- Factors affecting mutual inductance: number of turns in coil, physical size of coil, permeability of coil, position of coils with respect to each other;
- Lenz’s Law and polarity determining rules;
- Back emf, self induction;
- Saturation point;
- Principle uses of inductors.
3.12 DC Motor / Generator Theory

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Basic motor and generator theory;
- Construction and purpose of components in DC generator;
- Operation of, and factors affecting output and direction of current flow in DC generators;
- Operation of, and factors affecting output power, torque, speed and direction of rotation of DC motors;
- Series wound, shunt wound and compound motors;
- Starter Generator construction.

3.13 AC Theory

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Sinusoidal waveform: phase, period, frequency, cycle;
- Instantaneous, average, root mean square, peak, peak to peak current values and calculations of these values, in relation to voltage, current and power;
- Triangular / Square waves;
- Single / 3 phase principles.

3.14 Resistive (R), Capacitive (C) and Inductive (L) Circuits

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Phase relationship of voltage and current in L, C and R circuits, parallel, series and series parallel;
- Power dissipation in L, C and R circuits;
- Impedance, phase angle, power factor and current calculations;
- True power, apparent power and reactive power calculations.

3.15 Transformers

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Transformer construction principles and operation;
- Transformer losses and methods for overcoming them;
- Transformer action under load and no-load conditions;
- Power transfer, efficiency, polarity markings;
- Calculation of line and phase voltages and currents;
- Calculation of power in a three phase system;
- Primary and Secondary current, voltage, turns ratio, power, efficiency;
- Auto transformers.

3.16 Filters

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

- Operation, application and uses of the following filters: low pass, high pass, band pass, band stop.
3.17 AC Generators

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Rotation of loop in a magnetic field and waveform produced;
Operation and construction of revolving armature and revolving field type AC generators;
Single phase, two phase and three phase alternators;
Three phase star and delta connections advantages and uses;
Permanent Magnet Generators.

3.18 AC Motors

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Construction, principles of operation and characteristics of: AC synchronous and induction motors both single and polyphase;
Methods of speed control and direction of rotation;
Methods of producing a rotating field: capacitor, inductor, shaded or split pole.

MODULE 4. ELECTRONIC FUNDAMENTALS

4.1 Semiconductors

4.1.1 Diodes

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

(a) Diode symbols;
Diode characteristics and properties;
Diodes in series and parallel;
Main characteristics and use of silicon controlled rectifiers (thyristors), light emitting diode, photo conductive diode, varistor, rectifier diodes;
Functional testing of diodes.

(b) Materials, electron configuration, electrical properties;
P and N type materials: effects of impurities on conduction, majority and minority characters;
PN junction in a semiconductor, development of a potential across a PN junction in unbiased, forward biased and reverse biased conditions;
Diode parameters: peak inverse voltage, maximum forward current, temperature, frequency, leakage current, power dissipation;
Operation and function of diodes in the following circuits: clippers, clampers, full and half wave rectifiers, bridge rectifiers, voltage doublers and triplers;
Detailed operation and characteristics of the following devices:
silicon controlled rectifier (thyristor), light emitting diode, Schottky diode, photo conductive diode, varactor diode, varistor, rectifier diodes, Zener diode.

4.1.2 Transistors

(a) Transistors symbols;
Component description and orientation;
Transistor characteristics and properties.

(b) Construction and operation of PNP and NPN transistors;
Base, collector and emitter configurations;
Testing of transistors;
Basic appreciation of other transistor types and their uses;
Application of transistors: classes of amplifier (A, B, C);
Simple circuits including: bias, decoupling, feedback and stabilisation;
Multistage circuit principles: cascades, push-pull, oscillators, multivibrators, flip-flop circuits.

4.1.3 Integrated Circuits

(a) Description and operation of logic circuits and linear circuits / operational amplifiers;

(b) Description and operation of logic circuits and linear circuits:
Introduction to operation and function of an operational amplifier used as: integrator, differentiator, voltage follower, comparator;
Operation and amplifier stages connecting methods: resistive capacitive, inductive (transformer), inductive resistive (IR), direct;
Advantages and disadvantages of positive and negative feedback.

4.2 Printed Circuit Boards

Description and use of printed circuit boards.

4.3 Servomechanisms

(a) Understanding of the following terms: Open and closed loop systems, feedback, follow up, analogue transducers;
Principles of operation and use of the following synchro system components / features: resolvers, differential, control and torque, transformers;

(b) Understanding of the following terms: Open and closed loop, follow up, servomechanism, analogue, transducer, null, damping, feedback, deadband;
Construction operation and use of the following synchro system components: resolvers, differential, control and torque, E and I
transformers, inductance transmitters, capacitance transmitters, synchronous transmitters;
Servomechanism defects, reversal of synchro leads, hunting.

MODULE 5. DIGITAL TECHNIQUES / ELECTRONIC INSTRUMENT SYSTEMS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Electronic Instrument Systems</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Typical systems arrangements and cockpit layout of electronic instrument systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Numbering Systems</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Numbering systems: binary, octal and hexadecimal;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of conversions between the decimal and binary, octal and hexadecimal systems and vice versa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Data Conversion</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Analogue Data, Digital Data;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation and application of analogue to digital, and digital to analogue converters, inputs and outputs, limitations of various types.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Data Buses</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Operation of data buses in aircraft systems, including knowledge of ARINC and other specifications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Network / Ethernet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 Logic Circuits</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a) Identification of common logic gate symbols, tables and equivalent circuits;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications used for aircraft systems, schematic diagrams.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Interpretation of logic diagrams.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5.6 Basic Computer Structure</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(a) Computer terminology (including bit, byte, software, hardware, CPU, IC, and various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>A</td>
<td>B1-1</td>
<td>B1-3</td>
<td>B1-2</td>
<td>B1-4</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>memory devices such as RAM, ROM, PROM; Computer technology (as applied in aircraft systems).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Computer related terminology; Operation, layout and interface of the major components in a micro computer including their associated bus systems; Information contained in single and multiaddress instruction words; Memory associated terms; Operation of typical memory devices; Operation, advantages and disadvantages of the various data storage systems.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5.7</td>
<td>Microprocessors</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Functions performed and overall operation of a microprocessor; Basic operation of each of the following microprocessor elements: control and processing unit, register, arithmetic logic unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Integrated Circuits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Operation and use of encoders and decoders; Function of encoder types; Uses of medium, large and very large scale integration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Multiplexing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Operation, application and identification in logic diagrams of multiplexers and demultiplexers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Fibre Optics</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Advantages and disadvantages of fibre optic data transmission over electrical wire propagation; Fibre optic data bus; Fibre optic related terms; Terminations; Couplers, control terminals, remote terminals; Application of fibre optics in aircraft systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.11 Electronic Displays

Principles of operation of common types of displays used in modern aircraft, including Cathode Ray Tubes, Light Emitting Diodes and Liquid Crystal Display.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5.12 Electrostatic Sensitive Devices

Special handling of components sensitive to electrostatic discharges;

Awareness of risks and possible damage, component and personnel anti-static protection devices.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5.13 Software Management Control

Awareness of restrictions, airworthiness requirements and possible catastrophic effects of unapproved changes to software programmes.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5.14 Electromagnetic Environment

Influence of the following phenomena on maintenance practices for electronic system:

- EMC – Electromagnetic Compatibility
- EMI – Electromagnetic Interference
- HIRF – High Intensity Radiated Field
- Lightning / lightning protection.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5.15 Typical Electronic / Digital Aircraft Systems

General arrangement of typical electronic / digital aircraft systems and associated BITE (Built In Test Equipment) such as:

(a) For B1 and B2 only:

- ACARS – ARINC Communication and Addressing and Reporting System
- EICAS – Engine Indication and Crew Alerting System
- FBW – Fly-by-Wire
- FMS – Flight Management System
- IRS – Inertial Reference System;

(b) For B1, B2, and B3:

- ECAM – Electronic Centralised Aircraft

Monitoring

- EFIS – Electronic Flight Instrument System
- GPS – Global Positioning System
- TCAS – Traffic Alert Collision Avoidance System
- Integrated Modular Avionics
- Cabin Systems
- Information Systems.

MODULE 6. MATERIALS AND HARDWARE

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Materials – Ferrous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Characteristics, properties and identification of common alloy steels used in aircraft; Heat treatment and application of alloy steels.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(b) Testing of ferrous materials for hardness, tensile strength, fatigue strength and impact resistance.</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Materials – Non-Ferrous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Characteristics, properties and identification of common non-ferrous materials used in aircraft; Heat treatment and application of non-ferrous materials;</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(b) Testing of non-ferrous material for hardness, tensile strength, fatigue strength and impact resistance.</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Materials – Composite and Non-Metallic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3.1 Composite and non-metallic other than wood and fabric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Characteristics, properties and identification of common composite and non-metallic materials, other than wood, used in aircraft; Sealant and bonding agents;</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(b) The detection of defects / deterioration in composite and non-metallic material; Repair of composite and non-metallic material.</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6.3.2 Wooden structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction methods of wooden airframe structures;</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
Characteristics, properties and types of wood and glue used in aeroplanes;
Preservation and maintenance of wooden structure;
Types of defects in wood material and wooden structures;
The detection of defects in wooden structure;
Repair of wooden structure.

6.3.3 Fabric covering
Characteristics, properties and types of fabrics used in aeroplanes;
Inspections methods for fabric;
Types of defects in fabric;
Repair of fabric covering.

6.4 Corrosion
(a) Chemical fundamentals:
Formation by, galvanic action process, microbiological, stress;
(b) Types of corrosion and their identification:
Causes of corrosion;
Material types, susceptibility to corrosion.

6.5 Fasteners
6.5.1 Screw threads
Screw nomenclature;
Thread forms, dimensions and tolerances for standard threads used in aircraft;
Measuring screw threads.

6.5.2 Bolts, studs and screws
Bolt types: specification, identification and marking of aircraft bolts, international standards;
Nuts: self locking, anchor, standard types;
Machine screws: aircraft specifications;
Studs: types and uses, insertion and removal;
Self tapping screws, dowels.

6.5.3 Locking devices
Tab and spring washers, locking plates, split pins, pal-nuts, wire locking, quick release fasteners, keys, circlips, cotter pins.
6.5.4 Aircraft rivets

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

6.6 Pipes and Unions

(a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft;

(b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

6.7 Springs

Types of springs, materials, characteristics and applications.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

6.8 Bearings

Purpose of bearings, loads, material, construction; Types of bearings and their application.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

6.9 Transmissions

Gear types and their application;

Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns;

Belts and pulleys, chains and sprockets.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

6.10 Control Cables

Types of cables:

End fittings, turnbuckles and compensation devices;

Pulleys and cable system components;

Bowden cables;

Aircraft flexible control systems.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

6.11 Electrical Cables and Connectors

Cable types, construction and characteristics;

High tension and co-axial cables;

Crimping;

Connector types, pins, plugs, sockets, insulators, current and voltage rating, coupling, identification codes.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
MODULE 7A. MAINTENANCE PRACTICES

Note: This module does not apply to category B3. Relevant subject matters for category B3 are defined in module 7B.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
</table>

7.1 Safety Precautions – Aircraft and Workshop

Aspects of safe working practices including precautions to take when working with electricity, gases especially oxygen, oils and chemicals. Also, instruction in the remedial action to be taken in the event of a fire or another accident with one or more of these hazards including knowledge on extinguishing agents.

7.2 Workshop Practices

Care of tools, control of tools, use of workshop materials; Dimensions, allowances and tolerances, standards of workmanship; Calibration of tools and equipment, calibration standards.

7.3 Tools

Common hand tool types; Common power tool types; Operation and use of precision measuring tools; Lubrication equipment and methods. Operation, function and use of electrical general test equipment.

7.4 Avionic General Test Equipment

Operation, function and use of avionic general test equipment.

7.5 Engineering Drawings, Diagrams and Standards

Drawing types and diagrams, their symbols, dimensions, tolerances and projections; Identifying title block information; Microfilm, microfiche and computerised presentations; Specification 100 of the Air Transport Association (ATA) of America; Aeronautical and other applicable standards including ISO, AN, MS, NAS and MIL; Wiring diagrams and schematic diagrams.

7.6 Fits and Clearances

Drill sizes for bolt holes, classes of fits; Common system of fits and clearances; Schedule of fits and clearances for aircraft and engines; Limits for bow, twist and wear;
Standard methods for checking shafts, bearings and other parts.

7.7 Electrical Wiring Interconnection System (EWIS) 1 3 3

Continuity, insulation and bonding techniques and testing;
Use of crimp tools: hand and hydraulic operated;
Testing of crimp joints;
Connector pin removal and insertion;
Co-axial cables: testing and installation precautions;
Identification of wire types, their inspection criteria and damage tolerance.
Wiring protection techniques: Cable looming and loom support, cable clamps, protective sleeving techniques including heat shrink wrapping, shielding;
EWIS installations, inspection, repair, maintenance and cleanliness standards.

7.8 Riveting 1 2 -

Riveted joints, rivet spacing and pitch;
Tools used for riveting and dimpling;
Inspection of riveted joints.

7.9 Pipes and Hoses 1 2 -

Bending and belling / flaring aircraft pipes;
Inspection and testing of aircraft pipes and hoses;
Installation and clamping of pipes.

7.10 Springs 1 2 -

Inspection and testing of springs.

7.11 Bearings 1 2 -

Testing, cleaning and inspection of bearings;
Lubrication requirement of bearings;
Defects in bearings and their causes.

7.12 Transmissions 1 2 -

Inspection of gears, backlash;
Inspection of belts and pulleys, chains and sprockets;
Inspection of screw jacks, lever devices, push-pull rod systems.

7.13 Control Cables 1 2 -

Swaging of end fittings;
7.14 **Material handling**

7.14.1 *Sheet Metal*
- Marking out and calculation of bend allowance;
- Sheet metal working, including bending and forming;
- Inspection of sheet metal work.

7.14.2 *Composite and non-metallic*
- Bonding practices;
- Environmental conditions;
- Inspection methods.

7.15 **Welding, Brazing, Soldering and Bonding**

(a) Soldering methods; inspection of soldered joints.

(b) Welding and brazing methods;
- Inspection of welded and brazed joints;
- Bonding methods and inspection of bonded joints.

7.16 **Aircraft Weight and Balance**

(a) Centre of Gravity / Balance limits calculation; use of relevant documents;

(b) Preparation of aircraft for weighing;
- Aircraft weighing.

7.17 **Aircraft Handling and Storage**

Aircraft taxiing / towing and associated safety precautions;
Aircraft jacking, chocking, securing and associated safety precautions;
Aircraft storage methods;
Refuelling / defueling procedures;
De-icing / anti-icing procedures;
Electrical, hydraulic and pneumatic ground supplies.
Effects of environmental conditions on aircraft handling and operation.

7.18 **Disassembly, Inspection, Repair and Assembly Techniques**

(a) Types of defects and visual inspection techniques;
- Corrosion removal, assessment and reprotection;
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) General repair methods, Structural Repair Manual; Ageing, fatigue and corrosion control programmes;</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>(c) Non-destructive inspection techniques including: penetrant, radiographic, eddy current, ultrasonic and boroscope methods;</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(d) Disassembly and re-assembly techniques;</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(e) Trouble shooting techniques.</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

7.19 Abnormal Events

(a) Inspections following lightning strikes and HIRF penetration; 2 2 2
(b) Inspections following abnormal events such as heavy landings and flight through turbulence.

7.20 Maintenance Procedures

Maintenance planning;
Modification procedures;
Stores procedures;
Certification / release procedures;
Interface with aircraft operation;
Maintenance Inspection / Quality Control / Quality Assurance;
Additional maintenance procedures;
Control of life limited components.

MODULE 7B. MAINTENANCE PRACTICES

Note: The scope of this module shall reflect the technology of aeroplanes relevant to the B3 category.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Safety Precautions – Aircraft and Workshop</td>
<td>3</td>
</tr>
</tbody>
</table>

Aspects of safe working practices including precautions to take when working with electricity, gases especially oxygen, oils and chemicals.
Also, instruction in the remedial action to be taken in the event of a fire or another accident with one or more of these hazards including knowledge on extinguishing agents.

7.2 Workshop Practices | 3 |

Care of tools, control of tools, use of workshop materials;
Dimensions, allowances and tolerances, standards of workmanship;
Calibration of tools and equipment, calibration standards.

7.3 Tools
Common hand tool types;
Common power tool types;
Operation and use of precision measuring tools;
Lubrication equipment and methods;
Operation, function and use of electrical general test equipment.

7.4 Avionic General Test Equipment
Operation, function and use of avionic general test equipment.

7.5 Engineering Drawings, Diagrams and Standards
Drawing types and diagrams, their symbols, dimensions, tolerances and projections;
Identifying title block information;
Microfilm, microfiche and computerised presentations;
Specification 100 of the Air Transport Association (ATA) of America;
Aeronautical and other applicable standards including ISO, AN, MS, NAS and MIL;
Wiring diagrams and schematic diagrams.

7.6 Fits and Clearances
Drill sizes for bolt holes, classes of fits;
Common system of fits and clearances;
Schedule of fits and clearances for aircraft and engines;
Limits for bow, twist and wear;
Standard methods for checking shafts, bearings and other parts.

7.7 Electrical Cables and Connectors
Continuity, insulation and bonding techniques and testing;
Use of crimp tools; hand and hydraulic operated;
Testing of crimp joints;
Connector pin removal and insertion;
Co-axial cables: testing and installation precautions;
Wiring protection techniques: Cable looming and loom support, cable clamps, protective sleeving techniques including heat shrink wrapping, shielding.

7.8 Riveting
Riveted joints, rivet spacing and pitch;
Tools used for riveting and dimpling;
Inspection of riveted joints.

7.9 **Pipes and Hoses**
Bending and belling / flaring aircraft pipes;
Inspection and testing of aircraft pipes and hoses;
Installation and clamping of pipes.

7.10 **Springs**
Inspection and testing of springs.

7.11 **Bearings**
Testing, cleaning and inspection of bearings;
Lubrication requirements of bearings;
Defects in bearings and their causes.

7.12 **Transmissions**
Inspection of gears, backlash;
Inspection of belts and pulleys, chains and sprockets;
Inspection of screw jacks, lever devices, push-pull rod systems.

7.13 **Control Cables**
Swaging of end fittings;
Inspection and testing of control cables;
Bowden cables; aircraft flexible control systems.

7.14 **Material handling**
7.14.1 **Sheet Metal**
Marking out and calculations of bend allowance;
Sheet metal working, including bending and forming;
Inspection of sheet metal work.

7.14.2 **Composite and non-metallic**
Bonding practices;
Environmental conditions;
Inspection methods.

7.15 **Welding, Brazing, Soldering and Bonding**
(a) Soldering methods; inspection of soldered joints;
(b) Welding and brazing methods;
 Inspection of welded and brazed joints;
 Bonding methods and inspection of bonded joints.

7.16 Aircraft Weight and Balance

(a) Centre of Gravity / Balance limits calculation; use of relevant documents;
(b) Preparation of aircraft for weighing;
 Aircraft weighing.

7.17 Aircraft Handling and Storage

Aircraft taxiing / towing and associated safety precautions;
Aircraft jacking, choking, securing and associated safety precautions;
Aircraft storage methods;
Refuelling / defueling procedures;
De-icing / anti-icing procedures;
Electrical, hydraulic and pneumatic ground supplies;
Effects of environmental conditions on aircraft handling and operation.

7.18 Disassembly, Inspection, Repair and Assembly Techniques

(a) Types of defects and visual inspection techniques;
 Corrosion removal, assessment and reprotection;
(b) General repair methods, Structural Repair Manual;
 Ageing, fatigue and corrosion control programmes;
(c) Non-destructive inspection techniques including: penetrant, radiographic, eddy current, ultrasonic and boroscope methods;
(d) Disassembly and re-assembly techniques;
(e) Trouble shooting techniques.

7.19 Abnormal Events

(a) Inspections following lightning strikes and HIRF penetration.
(b) Inspections following abnormal events such as heavy landings and flight through turbulence.

7.20 Maintenance Procedures

Maintenance planning;
Modification procedures;
Stores procedures;
Certification / release procedures;
Interface with aircraft operation;
Maintenance Inspection / Quality Control / Quality Assurance;
Additional maintenance procedures;
Control of life limited components.

MODULE 8. BASIC AERODYNAMICS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Physics of the Atmosphere</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>International Standard Atmosphere (ISA), application to aerodynamics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2 Aerodynamics</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Airflow around a body;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary layer, laminar and turbulent flow, free stream flow, relative airflow, upwash and downwash, vortices, stagnation;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The terms: camber, chord, mean aerodynamic chord, profile (parasite) drag, induced drag, centre of pressure, angle of attack, wash in and wash out, fineness ratio, wing shape and aspect ratio;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrust, Weight, Aerodynamic Resultant;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation of Lift and Drag; Angle of Attack, Lift coefficient, Drag coefficient, polar curve, stall;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerofoil contamination including ice, snow, frost.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3 Theory of Flight</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Relationship between lift, weight, thrust and drag;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glide ratio;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state flights, performance;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of the turn;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence of load factor; stall, flight envelope and structural limitations;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift augmentation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4 Flight Stability and Dynamics</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Longitudinal, lateral and directional stability (active and passive).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MODULE 9A. HUMAN FACTORS

Note: This module does not apply to category B3. Relevant subject matters for category B3 are defined in module 9B.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B1</td>
<td>B2</td>
</tr>
</tbody>
</table>

9.1 General 2 2 2

The need to take human factors into account;
Incidents attributable to human factors / human error;
“Murphy’s” law.

9.2 Human Performance and Limitations 1 2 2

Vision;
Hearing;
Information processing;
Attention and perception;
Memory;
Claustrophobia and physical access.

9.3 Social Psychology 1 1 1

Responsibility: individual and group;
Motivation and de-motivation;
Peer pressure;
“Culture” issues;
Team working;
Management, supervision and leadership.

9.4 Factors Affecting Performance 2 2 2

Fitness / health;
Stress: domestic and work related;
Time pressure and deadlines;
Workload: overload and underload;
Sleep and fatigue, shiftwork;
Alcohol, medication, drug abuse.

9.5 Physical Environment 1 1 1

Noise and fumes;
Illumination;
Climate and temperature;
Motion and vibration;
Working environment.
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6 Tasks</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Physical work;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive tasks;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual inspection;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex systems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.7 Communication</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Within and between teams;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work logging and recording;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keeping up to date, currency;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissemination of information.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.8 Human Error</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Error models and theories;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of error in maintenance tasks;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implications of errors (i.e. accidents);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoiding and managing errors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.9 Hazards in the Workplace</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Recognising and avoiding hazards;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dealing with emergencies.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODULE 9B. HUMAN FACTORS

Note: The scope of this module shall reflect the less demanding environment of maintenance for B3 licence holders.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 General</td>
<td>2</td>
</tr>
<tr>
<td>The need to take human factors into account;</td>
<td></td>
</tr>
<tr>
<td>Incidents attributable to human factors / human error;</td>
<td></td>
</tr>
<tr>
<td>“Murphy’s” law.</td>
<td></td>
</tr>
<tr>
<td>9.2 Human Performance and Limitations</td>
<td>2</td>
</tr>
<tr>
<td>Vision;</td>
<td></td>
</tr>
<tr>
<td>Hearing;</td>
<td></td>
</tr>
<tr>
<td>Information processing;</td>
<td></td>
</tr>
<tr>
<td>Attention and perception;</td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>B3</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.3 Social Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility” individual and group;</td>
</tr>
<tr>
<td>Motivation and de-motivation;</td>
</tr>
<tr>
<td>Peer pressure;</td>
</tr>
<tr>
<td>“Culture” issues;</td>
</tr>
<tr>
<td>Team working;</td>
</tr>
<tr>
<td>Management, supervision and leadership.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.4 Factors Affecting Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness / health;</td>
</tr>
<tr>
<td>Stress: domestic and work related;</td>
</tr>
<tr>
<td>Time pressure and deadlines;</td>
</tr>
<tr>
<td>Workload: overload and underload;</td>
</tr>
<tr>
<td>Sleep and fatigue, shiftwork;</td>
</tr>
<tr>
<td>Alcohol, medication, drug abuse.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.5 Physical Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise and fumes;</td>
</tr>
<tr>
<td>Illumination;</td>
</tr>
<tr>
<td>Climate and temperature;</td>
</tr>
<tr>
<td>Motion and vibration;</td>
</tr>
<tr>
<td>Working environment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.6 Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical work;</td>
</tr>
<tr>
<td>Repetitive tasks;</td>
</tr>
<tr>
<td>Visual inspection;</td>
</tr>
<tr>
<td>Complex systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.7 Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within and between teams;</td>
</tr>
<tr>
<td>Work logging and recording;</td>
</tr>
<tr>
<td>Keeping up to date, currency;</td>
</tr>
<tr>
<td>Dissemination of information.</td>
</tr>
</tbody>
</table>
9.8 Human Error

Error models and theories;
Types of error in maintenance tasks;
Implications of errors (i.e. accidents);
Avoiding and managing errors.

9.9 Hazards in the Workplace

Recognising and avoiding hazards;
Dealing with emergencies.

MODULE 10. AVIATION LEGISLATION

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.1 Regulatory Framework

Role of International Civil Aviation Organisation;
Role of the Civil Aviation Authority, Macao – China;
Macao Aviation Requirements; relationship between ANRM 19th Schedule, MAR-1, MAR-145, MAR-66, MAR-147 and Aeronautical Circulars (AC).

10.2 Certifying Staff – Maintenance

Detailed understanding of MAR-66.

10.3 Approved Maintenance Organisations

Detailed understanding of MAR-145.

10.4 Aeronautical Circulars

Detailed understanding of AC (GEN and AW).

10.5 ANRM 19th Schedule – Operator’s Maintenance Responsibility

(a) General

Air Operators Certificates (AOC);
Operators responsibilities;
Documents to be carried;
Aircraft placarding (Markings).

(b) Requirements

Application for and approval of the operator’s maintenance system;
LEVEL
<table>
<thead>
<tr>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
</table>

Maintenance responsibility;
Maintenance management;
Quality system;
Operator’s Maintenance Management Exposition;
Aircraft Maintenance Programme;
Aircraft Technical Log;
Maintenance records and log books;
MEL / CDL;
Accident / Occurrence reporting.

10.6 Aircraft Certification

(a) General

Detailed understanding of MAR-1.

(b) Documents

Certificate of Airworthiness;
Certificate of Registration;
Noise Certificate;
Weight Schedule;
Radio Station Licence and Approval.

10.7 Continuing airworthiness

(a) CMR;

- Maintenance Programmes, Maintenance checks and inspections;
- Master Minimum Equipment Lists, Minimum Equipment List, Dispatch Deviation Lists;
- Airworthiness Directives;
- Service Bulletins, manufacturers service information;
- Modifications and repairs;
- Maintenance documentation: maintenance manuals, structural repair manual, illustrated parts catalogue, etc.

(b) Test flights;

- ETOPS, maintenance and dispatch requirements;
- All Weather Operations, Category 2/3 operations and minimum equipment requirements.

10.8 Air Navigational Regulation of Macao (ANRM)

Detailed understanding of ANRM Part I, II, III, VI, VIII, XI, XII; 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 10th and 13th Schedule.
11.1 Theory of Flight

11.1.1 Aeroplane Aerodynamics and Flight Controls

Operation and effects of:
- roll control: ailerons and spoilers,
- pitch control: elevators, stabilators, variable incidence stabilisers and canards,
- yaw control, rudder limiters;

Control using elevons, ruddervators;

High lift devices, slots, slats, flaps, flaperons;

Drag inducing devices, spoilers, lift dumpers, speed brakes;

Effects of wing fences, saw tooth leading edges;

Boundary layer control using, vortex generators, stall wedges or leading edge devices;

Operation and effect of trim tabs, balance and antibalance (leading) tabs, servo tabs, spring tabs, mass balance, control surface bias, aerodynamic balance panels.

11.1.2 High Speed Flight

Speed of sound, subsonic flight, transonic flight, supersonic flight;

Mach number, critical Mach number, compressibility buffet, shock wave, aerodynamic heating, area rule;

Factors affecting airflow in engine intakes of high speed aircraft;

Effects of sweepback on critical Mach number.

11.2 Airframe Structures – General Concepts

(a) Airworthiness requirements for structural strength;

- Structural classification, primary, secondary and tertiary;
- Fail safe, safe life, damage tolerance concepts;

- Zonal and station identification systems;

- Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue;

- Drains and ventilation provisions;

- System installation provisions;

- Lightning strike protection provision;

- Aircraft bonding.

(b) Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor
structures, reinforcement, methods of skinning, anti-corrosive protection, wing, empennage and engine attachments;
Structure assembly techniques: riveting, bolting, bonding;
Methods of surface protection, such as chromating, anodising, painting;
Surface cleaning;
Airframe symmetry: methods of alignment and symmetry checks.

11.3 Airframe Structures – Aeroplanes

11.3.1 Fuselage (ATA 52/53/56)
Construction and pressurisation sealing;
Wing, stabiliser, pylon and undercarriage attachments;
Seat installation and cargo loading system;
Doors and emergency exits: construction, mechanisms, operation and safety devices;
Windows and windscreen construction and mechanisms.

11.3.2 Wings (ATA 57)
Construction;
Fuel storage;
Landing gear, pylon, control surface and high lift / drag attachments.

11.3.3 Stabilisers (ATA 55)
Construction;
Control surface attachment.

11.3.4 Flight Control Surfaces (ATA 55/57)
Construction and attachment;
Balance – mass and aerodynamic.

11.3.5 Nacelles / Pylons (ATA 54)
Nacelles / Pylons:
- Construction,
- Firewalls,
- Engine mounts.

11.4 Air Conditioning and Cabin Pressurisation (ATA 21)

11.4.1 Air supply
Sources of air supply including engine bleed, APU and ground cart.

11.4.2 Air Conditioning
Air conditioning systems;
Air cycle and vapour cycle machines;
Distribution systems;
Flow, temperature and humidity control system.

11.4.3 Pressurisation
Pressurisation systems;
Control and indication including control and safety valves;
Cabin pressure controllers.

11.4.4 Safety and warning devices
Protection and warning devices.

11.5 Instruments / Avionic Systems

11.5.1 Instrument Systems (ATA 31)
Pitot static: altimeter, air speed indicator, vertical speed indicator;
Gyroscopic: artificial horizon, attitude director, direction indicator, horizontal situation indicator, turn and slip indicator, turn coordinator;
Compasses: direct reading, remote reading;
Angle of attack indication, stall warning systems;
Glass cockpit;
Other aircraft system indication.

11.5.2 Avionic Systems
Fundamentals of system lay-outs and operation of:
- Auto Flight (ATA 22),
- Communications (ATA 23),

11.6 Electrical Power (ATA 24)
Batteries installation and Operation;
DC power generation;
AC power generation;
Emergency power generation;
Voltage regulation;
Power distribution;
Inverters, transformers, rectifiers;
Circuit protection;
External / Ground power.

11.7 Equipment and Furnishings (ATA 25)
(a) Emergency equipment requirements;
 Seats, harnesses and belts.
(b) Cabin lay-out;
 Equipment lay-out;
 Cabin Furnishing installation;
 Cabin entertainment equipment;
 Galley installation;
 Cargo handling and retention equipment;
 Airstairs.

11.8 Fire Protection (ATA 26)

(a) Fire and smoke detection and warning systems;
 Fire extinguishing systems;
 System tests;

(b) Portable fire extinguisher.

11.9 Flight Controls (ATA 27)

Primary controls: aileron, elevator, rudder, spoiler;
Trim control;
Active load control;
High lift devices;
Lift dump, speed brakes;
System operation: manual, hydraulic, pneumatic, electrical, fly-by-wire;
Artificial feel, Yaw damper, Mach trim, rudder limiter, gust lock systems;
Balancing and rigging;
Stall protection / warning system.

11.10 Fuel Systems (ATA 28)

System lay-out;
Fuel tanks;
Supply systems;
Dumping, venting and draining;
Cross-feed and transfer;
Indications and warnings;
Refuelling and defueling;
Longitudinal balance fuel systems.

11.11 Hydraulic Power (ATA 29)

System lay-out;
Hydraulic fluids;
<table>
<thead>
<tr>
<th>11.12</th>
<th>Ice and Rain Protection (ATA 30)</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.13</td>
<td>Landing Gear (ATA 32)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11.14</td>
<td>Lights (ATA 33)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11.15</td>
<td>Oxygen (ATA 35)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11.16</td>
<td>Pneumatic / Vacuum (ATA 36)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
System lay-out;
Sources: engine / APU, compressors, reservoirs, ground supply;
Pressure control;
Distribution;
Indications and warnings;
Interfaces with other systems.

11.17 Water / Waste (ATA 38)
Water system lay-out, supply, distribution, servicing and draining;
Toilet system lay-out, flushing and servicing;
Corrosion aspects.

11.18 On Board Maintenance Systems (ATA 45)
Central maintenance computers;
Data loading system;
Electronic library system;
Printing;
Structure monitoring (damage tolerance monitoring).

11.19 Integrated Modular Avionics (ATA 42)
Functions that may be typically integrated in the Integrated Modular Avionic (IMA) modules are, among others:
Core System: Network Components.

11.20 Cabin Systems (ATA 44)
The units and components which furnish a means of entertaining the passengers and providing communication within the aircraft (Cabin Intercommunication Data System) and between the aircraft cabin and ground stations (Cabin Network Service). Includes voice, data, music and video transmissions.
The Cabin Intercommunication Data System provides an interface between cockpit / cabin crew and cabin systems. These systems support data exchange of the different related LRU’s and they are typically operated via Flight Attendant Panels.
The Cabin Network Service typically consists on a server, typically interfacing with, among others, the following systems:
- Data/Radio Communication, In-Flight Entertainment System.

The Cabin Network Service may host functions such as:
- Access to pre-departure/departure reports,
- E-mail / intranet / Internet access,
- Passenger database;
Cabin Core System;
In-flight Entertainment System;
External Communication System;
Cabin Mass Memory System;
Cabin Monitoring System;
Miscellaneous Cabin System.

11.21 Information Systems (ATA 46)

The units and components which furnish a means of storing, updating and retrieving digital information traditionally provided on paper, microfilm or microfiche. Includes units that are dedicated to the information storage and retrieval function such as the electronic library mass storage and controller. Does not include units or components installed for other uses and shared with other systems, such as flight deck printer or general use display.

Typical examples include Air Traffic and Information Management Systems and Network Server Systems;
Aircraft General Information System;
Flight Deck Information System;
Maintenance Information System;
Passenger Cabin Information System;
Miscellaneous Information System.

MODULE 11B. PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS

Note 1: This module does not apply to category B3. Relevant subject matters for category B3 are defined in module 11C.

Note 2: The scope of this Module shall reflect the technology of aeroplanes pertinent to the A2 and B1.2 subcategory.

11.1 Theory of Flight

11.1.1 Aeroplane Aerodynamics and Flight Controls

Operation and effects of:
- roll control: ailerons and spoilers,
- pitch control: elevators, stabilators, variable incidence stabilisers and canards,
- yaw control, rudder limiters;
Control using elevons, ruddervators;
High lift devices, slots, slats, flaps, flaperons;
Drag inducing devices, spoilers, lift dumpers, speed brakes;
Effects of wing fences, saw tooth leading edges;
Boundary layer control using, vortex generators, stall wedges or leading edge devices;
Operation and effect of trim tabs, balance and antibalance (leading) tabs, servo tabs, spring tabs, mass balance, control surface bias, aerodynamic balance panels.

11.1.2 High Speed Flight – N/A

11.2 Airframe Structures – General Concepts

(a) Airworthiness requirements for structural strength;
 Structural classification, primary, secondary and tertiary;
 Fail safe, safe life, damage tolerance concepts;
 Zonal and station identification systems;
 Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue;
 Drains and ventilation provisions;
 System installation provisions;
 Lightning strike protection provision;
 Aircraft bonding.

(b) Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor structures, reinforcement, methods of skinning, anti-corrosive protection, wing, empennage and engine attachments;
 Structure assembly techniques: riveting, bolting, bonding;
 Methods of surface protection, such as chromating, anodising, painting;
 Surface cleaning;
 Airframe symmetry: methods of alignment and symmetry checks.

11.3 Airframe Structures – Aeroplanes

11.3.1 Fuselage (ATA 52/53/56)
 Construction and pressurisation sealing;
 Wing, tail-plane, pylon and undercarriage attachments;
 Seat installation;
 Doors and emergency exits: construction and operation;
 Windows and windscreen attachment.
11.3.2 Wings (ATA 57)
Construction;
Fuel storage;
Landing gear, pylon, control surface and high lift / drag attachments.

11.3.3 Stabilisers (ATA 55)
Construction;
Control surface attachment.

11.3.4 Flight Control Surfaces (ATA 55/57)
Construction and attachment;
Balance – mass and aerodynamic.

11.3.5 Nacelles / Pylons (ATA 54)
Nacelles / Pylons:
- Construction,
- Firewalls,
- Engine mounts.

11.4 Air Conditioning and Cabin Pressurisation (ATA 21)
Pressurisation and air conditioning system;
Cabin pressure controllers, protection and warning devices;
Heating systems.

11.5 Instruments / Avionic Systems

11.5.1 Instrument Systems (ATA 31)
Pitot static: altimeter, air speed indicator, vertical speed indicator;
Gyroscopic: artificial horizon, attitude director, direction indicator, horizontal situation indicator, turn and slip indicator, turn coordinator;
Compasses: direct reading, remote reading;
Angle of attack indication, stall warning systems;
Glass cockpit;
Other aircraft system indication.

11.5.2 Avionic Systems
Fundamentals of system lay-outs and operation of:
- Auto Flight (ATA 22),
- Communications (ATA 23),

11.6 Electrical Power (ATA 24)
Batteries Installation and Operation;
DC power generation;
Voltage regulation;
Power distribution;
Circuit protection;
Inverters, transformers.

11.7 **Equipment and Furnishings (ATA 25)**

(a) Emergency equipment requirements;
 Seats, harnesses and belts.

(b) Cabin lay-out;
 Equipment lay-out;
 Cabin Furnishing installation;
 Cabin entertainment equipment;
 Galley installation;
 Cargo handling and retention equipment;
 Airstairs.

11.8 **Fire Protection (ATA 26)**

(a) Fire and smoke detection and warning systems;
 Fire extinguishing systems;
 System tests;

(b) Portable fire extinguisher.

11.9 **Flight Controls (ATA 27)**

Primary controls: aileron, elevator, rudder;
Trim tabs;
High lift devices;
System operation: manual;
Gust locks;
Balancing and rigging;
Stall warning system.

11.10 **Fuel Systems (ATA 28)**

System lay-out;
Fuel tanks;
Supply systems;
Cross-feed and transfer;
Indications and warnings;
Refuelling and defueling.

11.11 **Hydraulic Power (ATA 29)**

System lay-out;
Hydraulic fluids;
Hydraulic reservoirs and accumulators;
Pressure generation: electric, mechanical;
Filters;
Pressure Control;
Power distribution;
Indication and warning systems.

11.12 **Ice and Rain Protection (ATA 30)**

Ice formation, classification and detection;
De-icing systems: electrical, pneumatic and chemical;
Probe and drain heating;
Wiper systems.

11.13 **Landing Gear (ATA 32)**

Construction, shock absorbing;
Extension and retraction systems: normal and emergency;
Indications and warning;
Wheels, brakes, antiskid and autobraking;
Tyres;
Steering;
Air-ground sensing.

11.14 **Lights (ATA 33)**

External: navigation, landing, taxiing, ice;
Internal: cabin, cockpit, cargo;
Emergency.

11.15 **Oxygen (ATA 35)**

System lay-out: cockpit, cabin;
Sources, storage, charging and distribution;
Supply regulation;
Indications and warnings.
11.16 **Pneumatic / Vacuum (ATA 36)**

System lay-out;
Sources: engine / APU, compressors, reservoirs, ground supply;
Pressure control;
Distribution;
Indications and warnings;
Interfaces with other systems.

<table>
<thead>
<tr>
<th>11.16</th>
<th>Pneumatic / Vacuum (ATA 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>A2 B1.2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

11.17 **Water / Waste (ATA 38)**

Water system lay-out, supply, distribution, servicing and draining;
Toilet system lay-out, flushing and servicing;
Corrosion aspects.

<table>
<thead>
<tr>
<th>11.17</th>
<th>Water / Waste (ATA 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>B3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

MODULE 11C. PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS

Note: The scope of this module shall reflect the technology of aeroplanes pertinent to the B3 category.

11.1 **Theory of Flight**

Aeroplane Aerodynamics and Flight Controls

Operation and effects of:
- roll control: ailerons,
- pitch control: elevators, stabilators, variable incidence stabilisers and canards,
- yaw control, rudder limiters;
Control using elevons, ruddervators;
High lift devices, slots, slats, flaps, flaperons;
Drag inducing devices, lift dumpers, speed brakes;
Effects of wing fences, saw tooth leading edges;
Boundary layer control using, vortex generators, stall wedges or leading edge devices;
Operation and effect of trim tabs, balance and ant balance (leading) tabs, servo tabs, spring tabs, mass balance, control surface bias, aerodynamic balance panels.

<table>
<thead>
<tr>
<th>11.1</th>
<th>Theory of Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>B3</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

11.2 **Airframe Structures – General Concepts**

(a) Airworthiness requirements for structural strength;
Structural classification, primary, secondary and tertiary;
Fail safe, safe life, damage tolerance concepts;
Zonal and station identification systems;

<table>
<thead>
<tr>
<th>11.2</th>
<th>Airframe Structures – General Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>B3</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue;
Drains and ventilation provisions;
System installation provisions;
Lightning strike protection provision;
Aircraft bonding.

(b) Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor structures, reinforcement, methods of skinning, anti-corrosive protection, wing, empennage and engine attachments;
Structure assembly techniques: riveting, bolting, bonding;
Methods of surface protection, such as chromating, anodising, painting;
Surface cleaning;
Airframe symmetry: methods of alignment and symmetry checks.

11.3 **Airframe Structures – Aeroplanes**

11.3.1 **Fuselage (ATA 52/53/56)**
Construction;
Wing, tail-plane, pylon and undercarriage attachments;
Seat installation;
Doors and emergency exits: construction and operation;
Windows and windscreen attachment.

11.3.2 **Wings (ATA 57)**
Construction;
Fuel storage;
Landing gear, pylon, control surface and high lift / drag attachments.

11.3.3 **Stabilisers (ATA 55)**
Construction;
Control surface attachment.

11.3.4 **Flight Control Surfaces (ATA 55/57)**
Construction and attachment;
Balance – mass and aerodynamic.

11.3.5 **Nacelles / Pylons (ATA 54)**
Nacelles / Pylons:
- Construction,
- Firewalls,
- Engine mounts.
11.4 **Air Conditioning (ATA 21)**

Heating and ventilation systems.

11.5 **Instruments / Avionic Systems**

11.5.1 *Instrument Systems (ATA 31)*

Pitot static: altimeter, air speed indicator, vertical speed indicator;

Gyroscopic: artificial horizon, attitude director, direction indicator, horizontal situation indicator, turn and slip indicator, turn coordinator;

Compasses: direct reading, remote reading;

Angle of attack indication, stall warning systems;

Glass cockpit;

Other aircraft system indication.

11.5.2 *Avionic Systems*

Fundamentals of system lay-outs and operation of:

- Auto Flight (ATA 22),
- Communications (ATA 23),

11.6 **Electrical Power (ATA 24)**

Batteries Installation and Operation;

DC power generation;

Voltage regulation;

Power distribution;

Circuit protection;

Inverters, transformers.

11.7 **Equipment and Furnishings (ATA 25)**

Emergency equipment requirements;

Seats, harnesses and belts.

11.8 **Fire Protection (ATA 26)**

Portable fire extinguisher.

11.9 **Flight Controls (ATA 27)**

Primary controls: aileron, elevator, rudder;

Trim tabs;

High lift devices;

System operation: manual;

Gust locks;
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Balancing and rigging;</td>
<td>Balancing and rigging;</td>
<td>Stall warning system.</td>
<td>Construction, shock absorbing;</td>
<td>External: navigation, anti collision, landing, taxiing, ice;</td>
</tr>
<tr>
<td></td>
<td>Stall warning system.</td>
<td>Stall warning system.</td>
<td></td>
<td>Extension and retraction systems: normal and emergency;</td>
<td>Internal: cabin, cockpit, cargo;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indications and warning;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System lay-out;</td>
<td>System lay-out;</td>
<td>Ice formation, classification and detection;</td>
<td>Construction, shock absorbing;</td>
<td>External: navigation, anti collision, landing, taxiing, ice;</td>
</tr>
<tr>
<td></td>
<td>Fuel tanks;</td>
<td>Fuel tanks;</td>
<td>De-icing systems: electrical, hot air, pneumatic and chemical;</td>
<td>Extension and retraction systems: normal and emergency;</td>
<td>Internal: cabin, cockpit, cargo;</td>
</tr>
<tr>
<td></td>
<td>Supply systems;</td>
<td>Supply systems;</td>
<td>Probe and drain heating;</td>
<td>Indications and warning;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-feed and transfer;</td>
<td>Cross-feed and transfer;</td>
<td>Wiper systems.</td>
<td>Wheels, brakes, antiskid and autobraking;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indications and warnings;</td>
<td>Indications and warnings;</td>
<td></td>
<td>Tyres;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refuelling and defueling.</td>
<td>Refuelling and defueling.</td>
<td></td>
<td>Steering.</td>
<td></td>
</tr>
</tbody>
</table>
Emergency.

11.15 **Oxygen (ATA 35)**

System lay-out: cockpit, cabin;
Sources, storage, charging and distribution;
Supply regulation;
Indications and warnings.

11.16 **Pneumatic / Vacuum (ATA 36)**

System lay-out;
Sources: engine / APU, compressors, reservoirs, ground supply;
Pressure and vacuum pumps;
Pressure control;
Distribution;
Indications and warnings;
Interfaces with other systems.

MODULE 12. HELICOPTER AERODYNAMICS, STRUCTURES AND SYSTEMS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td></td>
</tr>
</tbody>
</table>

12.1 **Theory of Flight – Rotary Wing Aerodynamics**

Terminology;
Effects of gyroscopic precession;
Torque reaction and directional control;
Dissymmetry of lift, Blade tip stall;
Translating tendency and its correction;
Coriolis effect and compensation;
Vortex ring state, power settling, overpitching;
Auto-rotation;
Ground effect.

12.2 **Flight Control Systems**

Cyclic control;
Collective control;
Swashplate;
<table>
<thead>
<tr>
<th>-Level A3</th>
<th>B1.3</th>
<th>Level A4</th>
<th>B1.4</th>
</tr>
</thead>
</table>

Yaw control: Anti-Torque Control, Tail rotor, bleed air;
Main Rotor Head: Design and Operation features;
Blade Dampers: Function and construction;
Rotor Blades: Main and tail rotor blade construction and attachment;
Trim control, fixed and adjustable stabilisers;
System operation: manual, hydraulic, electrical and fly-by-wire;
Artificial feel;
Balancing and rigging.

12.3 **Blade Tracking and Vibration Analysis**

1 3

Rotor alignment;
Main and tail rotor tracking;
Static and dynamic balancing;
Vibration types, vibration reduction methods;
Ground resonance.

12.4 **Transmission**

1 3

Gear boxes, main and tail rotors;
Clutches, free wheel units and rotor brake;
Tail rotor drive shafts, flexible couplings, bearings, vibration dampers and bearing hangers.

12.5 **Airframe Structures**

(a) Airworthiness requirements for structural strength;

2 2

Structural classification, primary, secondary and tertiary;
Fail safe, safe life, damage tolerance concepts;
Zonal and station identification systems;
Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue;
Drains and ventilation provisions;
System installation provisions;
Lightning strike protection provision;

(b) Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor structures, reinforcement, methods of skinning and anti-corrosive protection.

1 2

Pylon, stabiliser and undercarriage attachments;
Seat installation;
Doors: construction, mechanisms, operation and safety devices;
Windows and windscreen construction;
Fuel storage;
Firewalls;
Engine mounts;
Structure assembly techniques: riveting, bolting, bonding;
Methods of surface protection, such as chromating, anodising, painting;
Surface cleaning.
Airframe symmetry: methods of alignment and symmetry checks.

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>B1.3</td>
</tr>
<tr>
<td>B1.4</td>
</tr>
</tbody>
</table>

12.6 **Air Conditioning (ATA 21)**

12.6.1 *Air supply*
Sources of air supply including engine bleed and ground cart.

12.6.2 *Air conditioning*
Air conditioning systems;
Distribution systems;
Flow and temperature control systems;
Protection and warning devices.

12.7 **Instruments/Avionic Systems**

12.7.1 *Instrument Systems (ATA 31)*
Pitot static: altimeter, air speed indicator, vertical speed indicator;
Gyroscopic: artificial horizon, attitude director, direction indicator, horizontal situation indicator, turn and slip indicator, turn coordinator;
Compasses: direct reading, remote reading;
Vibration indicating systems — HUMS;
Glass cockpit;
Other aircraft system indication.

12.7.2 *Avionic Systems*
Fundamentals of system layouts and operation of:
Auto Flight (ATA 22);
Communications (ATA 23);
Navigation Systems (ATA 34).

12.8 **Electrical Power (ATA 24)**
Batteries Installation and Operation;
DC power generation, AC power generation;
Emergency power generation;
Voltage regulation, Circuit protection.
Power distribution;
Inverters, transformers, rectifiers;
External / Ground power.

12.9 **Equipment and Furnishings (ATA 25)**

(a) Emergency equipment requirements;
 Seats, harnesses and belts;
 Lifting systems;

(b) Emergency flotation systems;
 Cabin lay-out, cargo retention;
 Equipment lay-out;
 Cabin Furnishing Installation.

12.10 **Fire Protection (ATA 26)**

Fire and smoke detection and warning systems;
Fire extinguishing systems;
System tests.

12.11 **Fuel Systems (ATA 28)**

System lay-out;
Fuel tanks;
Supply systems;
Dumping, venting and draining;
Cross-feed and transfer;
Indications and warnings;
Refuelling and defueling.

12.12 **Hydraulic Power (ATA 29)**

System lay-out;
Hydraulic fluids;
Hydraulic reservoirs and accumulators;
Pressure generation: electric, mechanical, pneumatic;
Emergency pressure generation;
Filters;
<table>
<thead>
<tr>
<th>LEVEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>B1.3</td>
</tr>
<tr>
<td>A4</td>
<td>B1.4</td>
</tr>
</tbody>
</table>

Pressure Control;
Power distribution;
Indication and warning systems;
Interface with other systems.

12.13 **Ice and Rain Protection (ATA 30)**
Ice formation, classification and detection;
Anti-icing and De-icing systems: electrical, hot air and chemical;
Rain repellent and removal;
Probe and drain heating;
Wiper system.

12.14 **Landing Gear (ATA 32)**
Construction, shock absorbing;
Extension and retraction systems: normal and emergency;
Indications and warning;
Wheels, Tyres, brakes;
Steering;
Air-ground sensing;
Skids, floats.

12.15 **Lights (ATA 33)**
External: navigation, landing, taxiing, ice;
Internal: cabin, cockpit, cargo;
Emergency.

12.16 **Pneumatic/Vacuum (ATA 36)**
System lay-out;
Sources: engine / APU, compressors, reservoirs, ground supply;
Pressure control;
Distribution;
Indications and warnings;
Interfaces with other systems.

12.17 **Integrated Modular Avionics (ATA42)**
Functions that may be typically integrated in the Integrated Modular Avionic (IMA) modules are, among others: Bleed Management, Air Pressure Control, Air Ventilation and Control, Avionics and Cockpit Ventilation Control, Temperature Control, Air Traffic Communication, Avionics Communication
Router, Electrical Load Management, Circuit Breaker Monitoring, Electrical System BITE, Fuel Management, Braking Control, Steering Control, Landing Gear Extension and Retraction, Tyre Pressure Indication, Oleo Pressure Indication, Brake Temperature Monitoring, etc.

Core System;

Network Components.

12.18 **On Board Maintenance Systems (ATA45)**

Central maintenance computers;

Data loading system;

Electronic library system;

Printing;

Structure monitoring (damage tolerance monitoring).

12.19 **Information Systems (ATA46)**

The units and components which furnish a means of storing, updating and retrieving digital information traditionally provided on paper, microfilm or microfiche. Includes units that are dedicated to the information storage and retrieval function such as the electronic library mass storage and controller. Does not include units or components installed for other uses and shared with other systems, such as flight deck printer or general use display.

Typical examples include Air Traffic and Information Management Systems and Network Server Systems.

Aircraft General Information System;

Flight Deck Information System;

Maintenance Information System;

Passenger Cabin Information System;

Miscellaneous Information System.

MODULE 13. AIRCRAFT AERODYNAMICS, STRUCTURES AND SYSTEMS

13.1 Theory of Flight

(a) Aeroplane Aerodynamics and Flight Controls

Operation and effect of:

- roll control: ailerons and spoilers,
- pitch control: elevators, stabilators, variable incidence stabilisers and canards,
- yaw control, rudder limiters;

Control using elevons, ruddervators;
13.2 Structures — General Concepts

| (a) | Fundamentals of structural systems; | 1 |
| (b) | Zonal and station identification systems; Electrical bonding; Lightning strike protection provision. | 2 |

13.3 Autoflight (ATA 22)

Fundamentals of automatic flight control including working principles and current terminology;
Command signal processing;
Modes of operation: roll, pitch and yaw channels;
Yaw dampers;
Stability Augmentation System in helicopters;
Automatic trim control;
Autopilot navigation aids interface;
Autothrottle systems;
Automatic Landing Systems: principles and categories, modes of operation, approach, glideslope, land, go-around, system monitors and failure conditions.

13.4 Communication / Navigation (ATA 23/34)

Fundamentals of radio wave propagation, antennas, transmission lines, communication, receiver and transmitter;
Working principles of following systems:
- Very High Frequency (VHF) communication,
- High Frequency (HF) communication,
- Audio,
- Emergency Locator Transmitters,
- Cockpit Voice Recorder,
- Very High Frequency omnidirectional range (VOR),
- Automatic Direction Finding (ADF),
- Instrument Landing System (ILS),
- Microwave Landing System (MLS),
- Flight Director systems, Distance Measuring Equipment (DME),
- Very Low Frequency and hyperbolic navigation (VLF/Omega),
- Doppler navigation,
- Area navigation, RNAV systems,
- Flight Management Systems,
- Global Positioning System (GPS), Global Navigation Satellite Systems (GNSS),
- Inertial Navigation System,
- Air Traffic Control transponder, secondary surveillance radar,
- Traffic Alert and Collision Avoidance System (TCAS),
- Weather avoidance radar,
- Radio altimeter,
- ARINC communication and reporting.

13.5 **Electrical Power (ATA 24)**

Batteries Installation and Operation;
DC power generation;
AC power generation;
Emergency power generation;
Voltage regulation;
Power distribution;
Inverters, transformers, rectifiers;
Circuit protection;
External / Ground power.

13.6 **Equipment and Furnishings (ATA 25)**

Electronic emergency equipment requirements;
Cabin entertainment equipment.

13.7 **Flight Controls (ATA 27)**

(a) Primary controls: aileron, elevator, rudder, spoiler;

Trim control;
Active load control;
High lift devices;
Lift dump, speed brakes;
System operation: manual, hydraulic, pneumatic;
Artificial feel, Yaw damper, Mach trim, rudder limiter, gust locks.
Stall protection systems;

(b) System operation: electrical, fly-by-wire.
13.8 **Instruments (ATA 31)**

Classification;
Atmosphere;
Terminology;
Pressure measuring devices and systems;
Pitot static systems;
Altimeters;
Vertical speed indicators;
Airspeed indicators;
Machmeters;
Altitude reporting / alerting systems;
Air data computers;
Instrument pneumatic systems;
Direct reading pressure and temperature gauges;
Temperature indicating systems;
Fuel quantity indicating systems;
Gyroscopic principles;
Artificial horizons;
Slip indicators;
Directional gyros;
Ground Proximity Warning Systems;
Compass systems;
Flight Data Recording systems;
Electronic Flight Instrument Systems;
Instrument warning systems including master warning systems and centralised warning panels;
Stall warning systems and angle of attack indicating systems;
Vibration measurement and indication;
Glass cockpit.

13.9 **Lights (ATA 33)**

External: navigation, landing, taxiing, ice;
Internal: cabin, cockpit, cargo;
Emergency.

13.10 **On Board Maintenance Systems (ATA 45)**

Central maintenance computers;
Data loading system;
Electronic library system;
Printing;
Structure monitoring (damage tolerance monitoring).

13.11 **Air Conditioning and Cabin Pressurisation (ATA21)**

13.11.1 *Air supply*
Sources of air supply including engine bleed, APU and ground cart;

13.11.2 *Air Conditioning*
Air conditioning systems;
Air cycle and vapour cycle machines;
Distribution systems;
Flow, temperature and humidity control system.

13.11.3 *Pressurisation*
Pressurisation systems;
Control and indication including control and safety valves;
Cabin pressure controllers.

13.11.4 *Safety and warning devices*
Protection and warning devices.

13.12 **Fire Protection (ATA 26)**

(a) Fire and smoke detection and warning systems;
 Fire extinguishing systems;
 System tests;

(b) Portable fire extinguisher.

13.13 **Fuel Systems (ATA 28)**

System lay-out;
Fuel tanks;
Supply systems;
Dumping, venting and draining;
Cross-feed and transfer;
Indications and warnings;
Refuelling and defueling;
Longitudinal balance fuel systems.

13.14 **Hydraulic Power (ATA 29)**
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>System lay-out;</td>
<td>1</td>
</tr>
<tr>
<td>Hydraulic fluids;</td>
<td>1</td>
</tr>
<tr>
<td>Hydraulic reservoirs and accumulators;</td>
<td>1</td>
</tr>
<tr>
<td>Pressure generation: electrical, mechanical, pneumatic;</td>
<td>3</td>
</tr>
<tr>
<td>Emergency pressure generation;</td>
<td>3</td>
</tr>
<tr>
<td>Filters;</td>
<td>1</td>
</tr>
<tr>
<td>Pressure control;</td>
<td>3</td>
</tr>
<tr>
<td>Power distribution;</td>
<td>1</td>
</tr>
<tr>
<td>Indication and warning systems;</td>
<td>3</td>
</tr>
<tr>
<td>Interface with other systems.</td>
<td>3</td>
</tr>
</tbody>
</table>

13.15 Ice and Rain Protection (ATA 30)

Ice formation, classification and detection;
Anti-icing systems: electrical, hot air and chemical;
De-icing systems: electrical, hot air, pneumatic, chemical;
Rain repellent;
Probe and drain heating;
Wiper Systems.

13.16 Landing Gear (ATA 32)

Construction, shock absorbing;
Extension and retraction systems: normal and emergency;
Indications and warnings;
Wheels, brakes, antiskid and autobraking;
Tyres;
Steering;
Air-ground sensing.

13.17 Oxygen (ATA 35)

System lay-out: cockpit, cabin;
Sources, storage, charging and distribution;
Supply regulation;
Indications and warnings.

13.18 Pneumatic / Vacuum (ATA 36)

System lay-out;
Sources: engine / APU, compressors, reservoirs, ground supply;
Pressure control;
13.19 **Water / Waste (ATA 38)**

Water system lay-out, supply, distribution, servicing and draining;
Toilet system lay-out, flushing and servicing.

13.20 **Integrated Modular Avionics (ATA42)**

Functions that may be typically integrated in the Integrated Modular Avionic (IMA) modules are, among others:
- Bleed Management,
- Air Pressure Control,
- Air Ventilation and Control,
- Avionics and Cockpit Ventilation Control,
- Temperature Control,
- Air Traffic Communication,
- Avionics Communication Router,
- Electrical Load Management,
- Circuit Breaker Monitoring,
- Electrical System BITE,
- Fuel Management,
- Braking Control,
- Steering Control,
- Landing Gear Extension and Retraction,
- Tyre Pressure Indication,
- Oleo Pressure Indication,
- Brake Temperature Monitoring,
- etc.;

Core System;

Network Components.

13.21 **Cabin Systems (ATA44)**

The units and components which furnish a means of entertaining the passengers and providing communication within the aircraft (Cabin Intercommunication Data System) and between the aircraft cabin and ground stations (Cabin Network Service). Includes voice, data, music and video transmissions.

The Cabin Intercommunication Data System provides an interface between cockpit / cabin crew and cabin systems. These systems support data exchange of the different related LRU’s and they are typically operated via Flight Attendant Panels.

The Cabin Network Service typically consists on a server, typically interfacing with, among others, the following systems:
- Data / Radio Communication, In-Flight Entertainment System.

The Cabin Network Service may host functions such as:
- Access to pre-departure / departure reports,
- E-mail / intranet / Internet access,
- Passenger database;

Cabin Core System;

In-flight Entertainment System;

External Communication System;

Cabin Mass Memory System;

Cabin Monitoring System;

Miscellaneous Cabin System.
The units and components which furnish a means of storing, updating and retrieving digital information traditionally provided on paper, microfilm or microfiche. Includes units that are dedicated to the information storage and retrieval function such as the electronic library mass storage and controller. Does not include units or components installed for other uses and shared with other systems, such as flight deck printer or general use display.

Typical examples include Air Traffic and Information Management Systems and Network Server Systems.

Aircraft General Information System;
Flight Deck Information System;
Maintenance Information System;
Passenger Cabin Information System;
Miscellaneous Information System.

MODULE 14. PROPULSION

14.1 Turbine Engines

(a) Constructional arrangement and operation of turbojet, turbofan, turboshaft and turbopropeller engines;

(b) Electronic Engine control and fuel metering systems (FADEC).

14.2 Engine Indicating Systems

Exhaust gas temperature / Interstage turbine temperature systems;
Engine speed;
Engine Thrust Indication: Engine Pressure Ratio, engine turbine discharge pressure or jet pipe pressure systems;
Oil pressure and temperature;
Fuel pressure, temperature and flow;
Manifold pressure;
Engine torque;
Propeller speed.

14.3 Starting and Ignition Systems

Operation of engine start systems and components;
Ignition systems and components;
Maintenance safety requirements.
MODULE 15. GAS TURBINE ENGINE

<table>
<thead>
<tr>
<th></th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>15.1 Fundamentals</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Potential energy, kinetic energy, Newton’s laws of motion, Brayton cycle; The relationship between force, work, power, energy, velocity, acceleration; Constructional arrangement and operation of turbojet, turbofan, turboshaft, turboprop.</td>
</tr>
<tr>
<td>15.2 Engine Performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross thrust, net thrust, choked nozzle thrust, thrust distribution, resultant thrust, thrust horsepower, equivalent shaft horsepower, specific fuel consumption; Engine efficiencies; By-pass ratio and engine pressure ratio; Pressure, temperature and velocity of the gas flow; Engine ratings, static thrust, influence of speed, altitude and hot climate, flat rating, limitations.</td>
</tr>
<tr>
<td>15.3 Inlet</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Compressor inlet ducts; Effects of various inlet configurations; Ice protection.</td>
</tr>
<tr>
<td>15.4 Compressors</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Axial and centrifugal types; Constructional features and operating principles and applications; Fan balancing; Operation; Causes and effects of compressor stall and surge; Methods of air flow control: bleed valves, variable inlet guide vanes, variable stator vanes, rotating stator blades; Compressor ratio.</td>
</tr>
<tr>
<td>15.5 Combustion Section</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constructional features and principles of operation.</td>
</tr>
<tr>
<td>15.6 Turbine Section</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Operation and characteristics of different turbine blade types; Blade to disk attachment; Nozzle guide vanes;</td>
</tr>
</tbody>
</table>
Causes and effects of turbine blade stress and creep.

15.7 **Exhaust**

Constructional features and principles of operation;
Convergent, divergent and variable area nozzles;
Engine noise reduction;
Thrust reversers.

15.8 **Bearings and Seals**

Constructional features and principles of operation.

15.9 **Lubricants and Fuels**

Properties and specifications;
Fuel additives;
Safety precautions.

15.10 **Lubrication Systems**

System operation / lay-out and components.

15.11 **Fuel Systems**

Operation of engine control and fuel metering systems including electronic engine control (FADEC);
Systems lay-out and components.

15.12 **Air Systems**

Operation of engine air distribution and anti-ice control systems, including internal cooling, sealing and external air services.

15.13 **Starting and Ignition Systems**

Operation of engine start systems and components;
Ignition systems and components;
Maintenance safety requirements.

15.14 **Engine Indication Systems**

Exhaust Gas Temperature / Interstage Turbine Temperature;
Engine Thrust Indication: Engine Pressure Ratio, engine turbine discharge pressure or jet pipe pressure systems;
Oil pressure and temperature;
Fuel pressure and flow;
Engine speed;
Level A

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.15</td>
<td>Power Augmentation Systems
Operation and applications;
Water injection, water methanol;
Afterburner systems.</td>
</tr>
<tr>
<td>15.16</td>
<td>Turbo-prop Engines
Gas coupled / free turbine and gear coupled turbines;
Reduction gears;
Integrated engine and propeller controls;
Overspeed safety devices.</td>
</tr>
<tr>
<td>15.17</td>
<td>Turbo-shaft Engines
Arrangements, drive systems, reduction gearing, couplings, control systems.</td>
</tr>
<tr>
<td>15.18</td>
<td>Auxiliary Power Units (APUs)
Purpose, operation, protective systems.</td>
</tr>
<tr>
<td>15.19</td>
<td>Engine Installation
Configuration of firewalls, cowlings, acoustic panels, engine mounts, anti-vibration mounts, hoses, pipes, feeders, connectors, wiring looms, control cables and rods, lifting points and drains.</td>
</tr>
<tr>
<td>15.20</td>
<td>Fire Protection Systems
Operation of detection and extinguishing systems.</td>
</tr>
<tr>
<td>15.21</td>
<td>Engine Monitoring and Ground Operation
Procedures for starting and ground run-up;
Interpretation of engine power output and parameters;
Trend (including oil analysis, vibration and boroscope) monitoring;
Inspection of engine and components to criteria, tolerances and data specified by engine manufacturer;
Compressor washing / cleaning;
Foreign Object Damage.</td>
</tr>
<tr>
<td>15.22</td>
<td>Engine Storage and Preservation
Preservation and depreservation for the engine and accessories / systems.</td>
</tr>
</tbody>
</table>

Level B1

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.18</td>
<td>Auxiliary Power Units (APUs)</td>
</tr>
<tr>
<td>15.19</td>
<td>Engine Installation</td>
</tr>
<tr>
<td>15.21</td>
<td>Engine Monitoring and Ground Operation</td>
</tr>
<tr>
<td>15.22</td>
<td>Engine Storage and Preservation</td>
</tr>
</tbody>
</table>
MODU ME 16. PISTON ENGINE

<table>
<thead>
<tr>
<th>16.1 Fundamentals</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical, thermal and volumetric efficiencies;</td>
<td></td>
</tr>
<tr>
<td>Operating principles — 2 stroke, 4 stroke, Otto and Diesel;</td>
<td></td>
</tr>
<tr>
<td>Piston displacement and compression ratio;</td>
<td></td>
</tr>
<tr>
<td>Engine configuration and firing order.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.2 Engine Performance</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Power calculation and measurement;</td>
<td></td>
</tr>
<tr>
<td>Factors affecting engine power;</td>
<td></td>
</tr>
<tr>
<td>Mixtures / leaning, pre-ignition.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.3 Engine Construction</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Crank case, crank shaft, cam shafts, sumps;</td>
<td></td>
</tr>
<tr>
<td>Accessory gearbox;</td>
<td></td>
</tr>
<tr>
<td>Cylinder and piston assemblies;</td>
<td></td>
</tr>
<tr>
<td>Connecting rods, inlet and exhaust manifolds;</td>
<td></td>
</tr>
<tr>
<td>Valve mechanisms;</td>
<td></td>
</tr>
<tr>
<td>Propeller reduction gearboxes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.4 Engine Fuel Systems</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16.4.1 Carburettors</td>
<td></td>
</tr>
<tr>
<td>Types, construction and principles of operation;</td>
<td></td>
</tr>
<tr>
<td>Icing and heating.</td>
<td></td>
</tr>
<tr>
<td>16.4.2 Fuel injection systems</td>
<td></td>
</tr>
<tr>
<td>Types, construction and principles of operation.</td>
<td></td>
</tr>
<tr>
<td>16.4.3 Electronic engine control</td>
<td></td>
</tr>
<tr>
<td>Operation of engine control and fuel metering systems including electronic engine control (FADEC);</td>
<td></td>
</tr>
<tr>
<td>Systems lay-out and components.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.5 Starting and Ignition Systems</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Starting systems, pre-heat systems;</td>
<td></td>
</tr>
<tr>
<td>Magneto types, construction and principles of operation;</td>
<td></td>
</tr>
<tr>
<td>Ignition harnesses, spark plugs;</td>
<td></td>
</tr>
<tr>
<td>Low and high tension systems.</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Induction, Exhaust and Cooling Systems</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1 2 2</td>
<td>Construction and operation of: induction systems including alternate air systems; Exhaust systems, engine cooling systems — air and liquid.</td>
</tr>
</tbody>
</table>
16.13 Engine Storage and Preservation

Preservation and depreservation for the engine and accessories / systems.

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

MODULE 17A. PROPELLER

Note: This module does not apply to category B3. Relevant subject matters for category B3 are defined in module 17B.

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

17.1 Fundamentals

- Blade element theory;
- High / low blade angle, reverse angle, angle of attack, rotational speed;
- Propeller slip;
- Aerodynamic, centrifugal, and thrust forces;
- Torque;
- Relative airflow on blade angle of attack;
- Vibration and resonance.

17.2 Propeller Construction

- Construction methods and materials used in wooden, composite and metal propellers;
- Blade station, blade face, blade shank, blade back and hub assembly;
- Fixed pitch, controllable pitch, constant speeding propeller;
- Propeller / spinner installation.

17.3 Propeller Pitch Control

- Speed control and pitch change methods, mechanical and electrical/electronic;
- Feathering and reverse pitch;
- Overspeed protection.

17.4 Propeller Synchronising

- Synchronising and synchrophasing equipment.

17.5 Propeller Ice Protection

- Fluid and electrical de-icing equipment.

17.6 Propeller Maintenance
MODULE 17B. PROPELLER

Note: The scope of this Module shall reflect the propeller technology of aeroplanes pertinent to the B3 category.

<table>
<thead>
<tr>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

	Static and dynamic balancing;
	Blade tracking;
	Assessment of blade damage, erosion, corrosion, impact damage, delamination;
	Propeller treatment / repair schemes;
	Propeller engine running.

17.7 Propeller Storage and Preservation

Propeller preservation and depreservation.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

17.1 Fundamentals

Blade element theory;
High/low blade angle, reverse angle, angle of attack, rotational speed;
Propeller slip;
Aerodynamic, centrifugal, and thrust forces;
Torque;
Relative airflow on blade angle of attack;
Vibration and resonance.

17.2 Propeller Construction

Construction methods and material used in wooden, composite and metal propellers;
Blade station, blade face, blade shank, blade back and hub assembly;
Fixed pitch, controllable pitch, constant speed propeller;
Propeller/spinner installation.

17.3 Propeller Pitch Control

Speed control and pitch change methods, mechanical and electrical/electronic;
Feathering and reverse pitch;
Overspeed protection.

17.4 Propeller Synchronising

Synchronising and synchrophasing equipment.
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5 Propeller Ice Protection</td>
<td>2</td>
</tr>
<tr>
<td>Fluid and electrical de-icing equipment.</td>
<td></td>
</tr>
<tr>
<td>17.6 Propeller Maintenance</td>
<td>2</td>
</tr>
<tr>
<td>Static and dynamic balancing;</td>
<td></td>
</tr>
<tr>
<td>Blade tracking;</td>
<td></td>
</tr>
<tr>
<td>Assessment of blade damage, erosion, corrosion, impact damage, delamination;</td>
<td></td>
</tr>
<tr>
<td>Propeller treatment/repair schemes;</td>
<td></td>
</tr>
<tr>
<td>Propeller engine running.</td>
<td></td>
</tr>
<tr>
<td>17.7 Propeller Storage and Preservation</td>
<td>2</td>
</tr>
<tr>
<td>Propeller preservation and depreservation.</td>
<td></td>
</tr>
</tbody>
</table>
Intentionally Left Blank
Appendix 2
Basic Examination Standard

1 General

1.1 All basic examinations shall be carried out using the multi-choice question format and essay questions as specified below. The incorrect alternatives shall seem equally plausible to anyone ignorant of the subject. All of the alternatives shall be clearly related to the question and of similar vocabulary, grammatical construction and length. In numerical questions, the incorrect answers shall correspond to procedural errors such as corrections applied in the wrong sense or incorrect unit conversions; they shall not be mere random numbers.

1.2 Each multi-choice question shall have three alternative answers of which only one shall be the correct answer and the candidate shall be allowed a time per module which is based upon a nominal average of 75 seconds per question.

1.3 Each essay question requires the preparation of a written answer and the candidate shall be allowed 20 minutes to answer each such question.

1.4 Suitable essay questions shall be drafted and evaluated using the knowledge syllabus in Appendix 1 Modules 7A, 7B, 9A, 9B and 10.

1.5 Each question will have a model answer drafted for it, which will also include any known alternative answers that may be relevant for other subdivisions.

1.6 The model answer will also be broken down into a list of the important points known as Key Points.

1.7 The pass mark for each module and sub-module multi-choice part of the examination is 75 %.

1.8 The pass mark for each essay question is 75 % in that the candidates answer shall contain 75 % of the required key points addressed by the question and no significant error related to any required key point.

1.9 If either the multi-choice part only or the essay part only is failed, then it is only necessary to retake the multi-choice or essay part, as appropriate.

1.10 Penalty marking systems shall not be used to determine whether a candidate has passed.

1.11 An applicant who fails any module twice within a ninety day period may not re-sit that module examination until ninety days after the date of the last failed module examination, except in the case of a MAR-147 approved training organisation which conducts a course of re-training tailored to the failed module and the failed module may be retaken after 30 days.

1.12 The time periods required by MAR 66.25 apply to each individual module examination, with the exception of those module examinations which were passed as part of another category licence, where the licence has already been issued.
2 Number of questions per module

2.1 MODULE 1 — MATHEMATICS
 Category A: 16 multi-choice and 0 essay questions. Time allowed 20 minutes.
 Category B1: 32 multi-choice and 0 essay questions. Time allowed 40 minutes.
 Category B2: 32 multi-choice and 0 essay questions. Time allowed 40 minutes.
 Category B3: 28 multi-choice and 0 essay questions. Time allowed 35 minutes.

2.2 MODULE 2 — PHYSICS
 Category A: 32 multi-choice and 0 essay questions. Time allowed 40 minutes.
 Category B1: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B2: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B3: 28 multi-choice and 0 essay questions. Time allowed 35 minutes.

2.3 MODULE 3 — ELECTRICAL FUNDAMENTALS
 Category A: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
 Category B1: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B2: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B3: 24 multi-choice and 0 essay questions. Time allowed 30 minutes.

2.4 MODULE 4 — ELECTRONIC FUNDAMENTALS
 Category B1: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
 Category B2: 40 multi-choice and 0 essay questions. Time allowed 50 minutes.
 Category B3: 8 multi-choice and 0 essay questions. Time allowed 10 minutes.

2.5 MODULE 5 — DIGITAL TECHNIQUES / ELECTRONIC INSTRUMENT SYSTEMS
 Category A: 16 multi-choice and 0 essay questions. Time allowed 20 minutes.
 Category B1.1 and B1.3: 40 multi-choice and 0 essay questions. Time allowed 50 minutes.
 Category B1.2 and B1.4: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
 Category B2: 72 multi-choice and 0 essay questions. Time allowed 90 minutes.
 Category B3: 16 multi-choice and 0 essay questions. Time allowed 20 minutes.

2.6 MODULE 6 — MATERIALS AND HARDWARE
 Category A: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B1: 72 multi-choice and 0 essay questions. Time allowed 90 minutes.
 Category B2: 60 multi-choice and 0 essay questions. Time allowed 75 minutes.
 Category B3: 60 multi-choice and 0 essay questions. Time allowed 75 minutes.

2.7 MODULE 7A — MAINTENANCE PRACTICES
 Category A: 72 multi-choice and 2 essay questions. Time allowed 90 minutes plus 40 minutes.
 Category B1: 80 multi-choice and 2 essay questions. Time allowed 100 minutes plus 40 minutes.
 Category B2: 60 multi-choice and 2 essay questions. Time allowed 75 minutes plus 40 minutes.
MODULE 7B — MAINTENANCE PRACTICES
Category B3: 60 multi-choice and 2 essay questions. Time allowed 75 minutes plus 40 minutes.

2.8 MODULE 8 — BASIC AERODYNAMICS
Category A: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
Category B1: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
Category B2: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
Category B3: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.

2.9 MODULE 9A — HUMAN FACTORS
Category A: 20 multi-choice and 1 essay questions. Time allowed 25 minutes plus 20 minutes.
Category B1: 20 multi-choice and 1 essay questions. Time allowed 25 minutes plus 20 minutes.
Category B2: 20 multi-choice and 1 essay questions. Time allowed 25 minutes plus 20 minutes.
Category B3: 16 multi-choice and 1 essay questions. Time allowed 20 minutes plus 20 minutes.

2.10 MODULE 10 — AVIATION LEGISLATION
Category A: 40 multi-choice and 1 essay questions. Time allowed 50 minutes plus 20 minutes.
Category B1: 40 multi-choice and 1 essay questions. Time allowed 50 minutes plus 20 minutes.
Category B2: 40 multi-choice and 1 essay questions. Time allowed 50 minutes plus 20 minutes.
Category B3: 40 multi-choice and 1 essay questions. Time allowed 50 minutes plus 20 minutes.

2.11 MODULE 11A — TURBINE AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS
Category A: 108 multi-choice and 0 essay questions. Time allowed 135 minutes.
Category B1: 140 multi-choice and 0 essay questions. Time allowed 175 minutes

MODULE 11B — PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS
Category A: 72 multi-choice and 0 essay questions. Time allowed 90 minutes.
Category B1: 100 multi-choice and 0 essay questions. Time allowed 125 minutes.

MODULE 11C — PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS
Category B3: 60 multi-choice and 0 essay questions. Time allowed 75 minutes.

2.12 MODULE 12 — HELICOPTER AERODYNAMICS, STRUCTURES AND SYSTEMS:
Category A: 100 multi-choice and 0 essay questions. Time allowed 125 minutes.
Category B1: 128 multi-choice and 0 essay questions. Time allowed 160 minutes.

2.13 MODULE 13 — AIRCRAFT AERODYNAMICS, STRUCTURES AND SYSTEMS
Category B2: 180 multi-choice and 0 essay questions. Time allowed 225 minutes. Questions and time allowed may be split into two examinations as appropriate.

2.14 MODULE 14 — PROPULSION
Category B2: 24 multi-choice and 0 essay questions. Time allowed 30 minutes.
2.15 MODULE 15 — GAS TURBINE ENGINE
 Category A: 60 multi-choice and 0 essay questions. Time allowed 75 minutes.
 Category B1: 92 multi-choice and 0 essay questions. Time allowed 115 minutes.

2.16 MODULE 16 — PISTON ENGINE
 Category A: 52 multi-choice and 0 essay questions. Time allowed 65 minutes.
 Category B1: 72 multi-choice and 0 essay questions. Time allowed 90 minutes.
 Category B3: 68 multi-choice and 0 essay questions. Time allowed 85 minutes.

2.17 MODULE 17A — PROPELLER
 Category A: 20 multi-choice and 0 essay questions. Time allowed 25 minutes.
 Category B1: 32 multi-choice and 0 essay questions. Time allowed 40 minutes.

MODULE 17B — PROPELLER
 Category B3: 28 multi-choice and 0 essay questions. Time allowed 35 minutes.
Appendix 3

Aircraft Type Training and Examination Standard

On the Job Training

1 General

Aircraft type training shall consist of theoretical training and examination, and, except for the category C ratings, practical training and assessment.

(a) Theoretical training and examination shall comply with the following requirements:

(i) Shall be conducted by a maintenance training organisation appropriately approved in accordance with MAR-147 or, when conducted by other organisations, as directly approved by the AACM.

(ii) Shall comply with the standard described in paragraph 3.1 and 4 of this Appendix 3, except as permitted by the differences training described below.

(iii) In the case of a category C person qualified by holding an academic degree as specified in MAR 66.30(a)(5), the first relevant aircraft type theoretical training shall be at the category B1 or B2 level.

(iv) Shall have been started and completed within the 3 years preceding the application for a type rating endorsement.

(b) Practical training and assessment shall comply with the following requirements:

(i) Shall be conducted by a maintenance training organisation appropriately approved in accordance with MAR-147 or, when conducted by other organisations, as directly approved by the AACM.

(ii) Shall comply with the standard described in paragraph 3.2 and 4 of this Appendix 3, except as permitted by the differences training described below.

(iii) Shall include a representative cross section of maintenance activities relevant to the aircraft type.

(iv) Shall include demonstrations using equipment, components, simulators, other training devices or aircraft.

(v) Shall have been started and completed within the 3 years preceding the application for a type rating endorsement.

(c) Differences training

(i) Differences training has to be defined on a case-to-case basis taking into account the requirements contained in this Appendix 3 in respect of both theoretical and practical elements of type rating training.
(ii) A type rating shall only be endorsed on a licence after differences training when the applicant also complies with one of the following conditions:

— having already endorsed on the licence the aircraft type rating from which the differences are being identified, or

— having completed the type training requirements for the aircraft from which the differences are being identified.

2 Aircraft type training levels

The three levels listed below define the objectives, the depth of training and the level of knowledge that the training is intended to achieve.

— **Level 1:** A brief overview of the airframe, systems and engines as outlined in the Systems Description Section of the Aircraft Maintenance Manual / Instructions for Continued Airworthiness.

Course objectives: Upon completion of Level 1 training, the student will be able to:

(a) provide a simple description of the whole subject, using common words and examples, using typical terms and identify safety precautions related to the airframe, its systems and engines;

(b) identify aircraft manuals, maintenance practices important to the airframe, its systems and engine;

(c) define the general layout of the aircraft’s major systems;

(d) define the general layout and characteristics of the engines;

(e) identify special tooling and test equipment used with the aircraft.

— **Level 2:** Basic system overview of controls, indicators, principal components, including their location and purpose, servicing and minor troubleshooting. General knowledge of the theoretical and practical aspects of the subject.

Course objectives: In addition to the information contained in the Level 1 training, at the completion of Level 2 training, the student will be able to:

(a) understand the theoretical fundamentals; apply knowledge in a practical manner using detailed procedures;

(b) recall the safety precautions to be observed when working on or near the aircraft, engines and systems;

(c) describe systems and aircraft handling particularly access, power availability and sources;

(d) identify the locations of the principal components;

(e) explain the normal functioning of each major system, including terminology and nomenclature;

(f) perform the procedures for servicing associated with the aircraft for the following systems: Fuel, Engine, Hydraulics, Landing Gear, Water / Waste, and Oxygen;
(g) demonstrate proficiency in use of crew reports and on-board reporting systems (minor troubleshooting) and determine aircraft airworthiness per the MEL / CDL;

(h) demonstrate the use, interpretation and application of appropriate documentation including instructions for continued airworthiness, maintenance manual, illustrated parts catalogue, etc.

Level 3: Detailed description, operation, component location, removal / installation and bite and troubleshooting procedures to maintenance manual level.

Course objectives: In addition to the information contained in Level 1 and Level 2 training, at the completion of Level 3 training, the student will be able to:

(a) demonstrate a theoretical knowledge of aircraft systems and structures and interrelationships with other systems, provide a detailed description of the subject using theoretical fundamentals and specific examples and to interpret results from various sources and measurements and apply corrective action where appropriate;

(b) perform system, engine, component and functional checks as specified in the aircraft maintenance manual;

(c) demonstrate the use, interpret and apply appropriate documentation including structural repair manual, troubleshooting manual, etc.;

(d) correlate information for the purpose of making decisions in respect of fault diagnosis and rectification to maintenance manual level;

(e) describe procedures for replacement of components unique to aircraft type.

3 **Aircraft type training standard**

Although aircraft type training includes both theoretical and practical elements, courses can be approved for the theoretical element, the practical element or for a combination of both.

3.1 **Theoretical element**

(a) Objective:

On completion of a theoretical training course the student shall be able to demonstrate, to the levels identified in the Appendix 3 syllabus, the detailed theoretical knowledge of the aircraft’s applicable systems, structure, operations, maintenance, repair, and troubleshooting according to approved maintenance data. The student shall be able to demonstrate the use of manuals and approved procedures, including the knowledge of relevant inspections and limitations.

(b) Level of training:

Training levels are those levels defined in point 2 above.

After the first type course for category C certifying staff all subsequent courses need only be to level 1.

During a level 3 theoretical training, level 1 and 2 training material may be used to teach the full scope of the chapter if required. However, during the training the majority of the course material and training time shall be at the higher level.

(c) Duration:
The theoretical training minimum tuition hours are contained in the following table:

<table>
<thead>
<tr>
<th>Category</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroplanes with a maximum take-off mass above 30,000 kg:</td>
<td></td>
</tr>
<tr>
<td>B1.1</td>
<td>150</td>
</tr>
<tr>
<td>B1.2</td>
<td>120</td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>Aeroplanes with a maximum take-off mass equal or less than 30,000 kg and above 5,700 kg:</td>
<td></td>
</tr>
<tr>
<td>B1.1</td>
<td>120</td>
</tr>
<tr>
<td>B1.2</td>
<td>100</td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
</tr>
<tr>
<td>Aeroplanes with a maximum take-off mass of 5,700 kg and below ():**</td>
<td></td>
</tr>
<tr>
<td>B1.1</td>
<td>80</td>
</tr>
<tr>
<td>B1.2</td>
<td>60</td>
</tr>
<tr>
<td>B2</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
</tr>
<tr>
<td>Helicopters () :</td>
<td></td>
</tr>
<tr>
<td>B1.3</td>
<td>120</td>
</tr>
<tr>
<td>B1.4</td>
<td>100</td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
</tr>
</tbody>
</table>

(*) For non-pressurised piston engine aeroplanes below 2,000 kg MTOM the minimum duration can be reduced by 50 %.

(**) For helicopters in group 2, the minimum duration can be reduced by 30 %.

For the purpose of the table above, a tuition hour means 60 minutes of teaching and exclude any breaks, examination, revision, preparation and aircraft visit.

These hours apply only to theoretical courses for complete aircraft / engine combinations.

(d) Justification of course duration:

Training courses carried out in a maintenance training organisation approved in accordance with MAR-147 and courses directly approved by the AACM shall justify their hour duration and the coverage of the full syllabus by a training needs analysis based on:

— the design of the aircraft type, its maintenance needs and the types of operation,
— detailed analysis of applicable chapters — see contents table in point 3.1(e) below,
— detailed competency analysis showing that the objectives as stated in point 3.1(a) above are fully met.

Where the training needs analysis shows that more hours are needed, course lengths shall be longer than the minimum specified in the table.
Similarly, tuition hours of differences courses or other training course combinations (such as combined B1/B2 courses), and in cases of theoretical type training courses below the figures given in point 3.1(c) above, these shall be justified to the AACM by the training needs analysis as described above.

In addition, the course must describe and justify the following:

— The minimum attendance required to the trainee, in order to meet the objectives of the course.

— The maximum number of hours of training per day, taking into account pedagogical and human factors principles.

If the minimum attendance required is not met, the certificate of recognition shall not be issued. Additional training may be provided by the training organisation in order to meet the minimum attendance time.

(e) Content:

As a minimum, the elements in the Syllabus below that are specific to the aircraft type shall be covered. Additional elements introduced due to type variations, technological changes, etc. shall also be included.

The training syllabus shall be focused on mechanical and electrical aspects for B1 personnel, and electrical and avionic aspects for B2.

<table>
<thead>
<tr>
<th>Level</th>
<th>Aeroplanes Turbine</th>
<th>Aeroplanes Piston</th>
<th>Helicopters Turbine</th>
<th>Helicopters Piston</th>
<th>Avionics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licence category</td>
<td>B1</td>
<td>C</td>
<td>B1</td>
<td>C</td>
<td>B1</td>
</tr>
<tr>
<td>Introduction module:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 Time limits / maintenance checks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>06 Dimensions / Areas (MTOM, etc.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>07 Lifting and Shoring</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>08 Levelling and weighing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>09 Towing and Taxing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10 Parking / mooring, Storing and Return to Service</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11 Placards and Markings</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12 Servicing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20 Standard practices – only type particular</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Helicopters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Vibration and Noise Analysis (Blade tracking)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>60 Standard Practices Rotor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>62 Rotors – Monitoring and indicating</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>62A Rotors – Monitoring and indicating</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>63 Rotor Drives</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>63A Rotor Drives – Monitoring and indicating</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>64 Tail Rotor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>64A Tail rotor – Monitoring and indicating</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>65 Tail Rotor Drive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>Aeroplanes turbine</td>
<td>Aeroplanes piston</td>
<td>Helicopters turbine</td>
<td>Helicopters piston</td>
<td>Avionics</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Licence category</td>
<td>B1</td>
<td>C</td>
<td>B1</td>
<td>C</td>
<td>B1</td>
</tr>
<tr>
<td>65A Tail Rotor Drive – Monitoring and indicating</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>66 Folding Blades / Pylon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>67 Rotors Flight Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>53 Airframe Structure (Helicopter)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>25 Emergency Flotation Equipment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Airframe structures

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51 Standard practices and structures (damage classification, assessment and repair)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>53 Fuselage</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>54 Nacelles / Pylons</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>55 Stabilisers</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>56 Windows</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>57 Wings</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>27A Flight Control Surfaces (All)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>52 Doors</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Zonal and Station Identification Systems

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Airframe systems:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Air Conditioning</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>21A Air Supply</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>21B Pressurisation</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>21C Safety and Warning Devices</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>22 Autoflight</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23 Communications</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>24 Electrical Power</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>25 Equipment and Furnishings</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25A Electronic Equipment including emergency equipment</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>26 Fire Protection</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>27 Flight Controls</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>27A Sys. Operation: Electrical / Fly-by-Wire</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>28 Fuel Systems</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>28A Fuel Systems – Monitoring and indicating</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>29 Hydraulic Power</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>29A Hydraulic Power – Monitoring and indicating</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>30 Ice and Rain Protection</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>31 Indicating / Recording Systems</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>31A Instrument Systems</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>32 Landing Gear</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>32A Landing Gear – Monitoring and indicating</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Licence category</td>
<td>Aeroplanes turbine</td>
<td>Aeroplanes piston</td>
<td>Helicopters turbine</td>
<td>Helicopters piston</td>
<td>Avionics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 Lights</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 Navigation</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Oxygen</td>
<td>3 1 3 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 Pneumatic</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36A Pneumatic – Monitoring and indicating</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 Vacuum</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 Water / Waste</td>
<td>3 1 3 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 Water Ballast</td>
<td>3 1 3 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 Integrated modular avionics</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 Cabin Systems</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 On-Board Maintenance System (or covered in 31)</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 Information Systems</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td>2 1 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Cargo and Accessory Compartments</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td>3 1 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 Standard Practices – Engines,</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70A constructional arrangement and operation</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Installation Inlet, Compressors, Combustion Section, Engine Section, Bearings and Seals, Lubrication Systems).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70B Engine Performance</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 Engine</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 Engine Turbine / Turbo Prop / Ducted Fan / Ducted fan</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 Engine Fuel and Control</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 Air</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 Engine controls</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 Exhaust</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 Oil</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 Starting</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 Water Injections</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83 Accessory Gear Boxes</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 Propulsion Augmentation</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73A FADEC</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 Ignition</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 Engine Indicating Systems</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td>3 1 - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 Auxiliary Power Units (APUs)</td>
<td>3 1 - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 Standard Practices – Engines</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70A Constructional arrangement and operation</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Installation, Carburettors, Fuel injection systems, Induction, Exhaust and Cooling Systems, Supercharging / Turbocharging,</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td>- - 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multimedia Based Training (MBT) methods may be used to satisfy the theoretical training element either in the classroom or in a virtual controlled environment subject to the acceptance of the AACM.

3.2 Practical element

(a) Objective:

The objective of practical training is to gain the required competence in performing safe maintenance, inspections and routine work according to the maintenance manual and other relevant instructions and tasks as appropriate for the type of aircraft, for example troubleshooting, repairs, adjustments, replacements, rigging and functional checks. It includes the awareness of the use of all technical literature and documentation for the aircraft, the use of specialist / special tooling and test equipment for performing removal and replacement of components and modules unique to type, including any on-wing maintenance activity.

(b) Content:

At least 50% of the crossed items in the table below, which are relevant to the particular aircraft type, shall be completed as part of the practical training.
Tasks crossed represent subjects that are important for practical training purposes to ensure that the operation, function, installation and safety significance of key maintenance tasks is adequately addressed; particularly where these cannot be fully explained by theoretical training alone. Although the list details the minimum practical training subjects, other items may be added where applicable to the particular aircraft type.

Tasks to be completed shall be representative of the aircraft and systems both in complexity and in the technical input required to complete that task. While relatively simple tasks may be included, other more complex tasks shall also be incorporated and undertaken as appropriate to the aircraft type.

<table>
<thead>
<tr>
<th>Chapters</th>
<th>B1/B2</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOC</td>
<td>FOT</td>
<td>SGH</td>
</tr>
<tr>
<td>Introduction module:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Time limits / maintenance checks</td>
<td>X/X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 Dimensions / Areas (MTOM, etc.)</td>
<td>X/X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7 Lifting and Shoring</td>
<td>X/X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8 Levelling and weighing</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>9 Towing and taxiing</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>10 Parking / mooring, Storing and Return to Service</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>11 Placards and Markings</td>
<td>X/X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12 Servicing</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>20 Standard practices – only type particular</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Helicopters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Vibration and Noise Analysis (Blade tracking)</td>
<td>X/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60 Standard Practices Rotor – only type specific</td>
<td>X/X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>62 Rotors</td>
<td>X/-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>62A Rotors – Monitoring and indicating</td>
<td>X/X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>63 Rotor Drives</td>
<td>X/-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>63A Rotor Drives – Monitoring and indicating</td>
<td>X/X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>64 Tail Rotor</td>
<td>X/-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>64A Tail rotor – Monitoring and indicating</td>
<td>X/X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>65 Tail Rotor Drive</td>
<td>X/-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>65A Tail Rotor Drive – Monitoring and indicating</td>
<td>X/X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>66 Folding Blades / Pylon</td>
<td>X/-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>67 Rotors Flight Control</td>
<td>X/-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>53 Airframe Structure (Helicopter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: covered under Airframe structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Emergency Flotation Equipment</td>
<td>X/X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Airframe structures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 Standard Practices and Structures (damage classification, assessment and repair)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapters</td>
<td>B1/B2</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>LOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuselage X/- - - - - - - - X - - - - -</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nacelles / Pylons X/- - - - - - - - - -</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stabilisers X/- - - - - - - - - - -</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Windows X/- - - - - - X - - - - -</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wings X/- - - - - - - - - - -</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27A Flight Control Surfaces X/- - - - X</td>
<td>X/-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Doors X/X X X - - - - - X - - - - -</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Airframe systems:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Air Conditioning X/X X X - X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21A Air Supply X/X X - - - - - X - - -</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21B Pressurisation X/X X - - X X - - X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21C Safety and warning Devices X/X - X - X - - - X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22 Autoflight X/X - - - X - X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23 Communications X/X - X - X - X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24 Electrical Power X/X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25 Equipment and Furnishings X/X X X X - - X X X - - -</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25A Electronic Equipment including emergency equipment X/X X X X X - - X X X - -</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 Fire Protection X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27 Flight Controls X/X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28 Fuel Systems X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28A Fuel Systems – Monitoring and indicating X/X X - - - - X X X - X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29 Hydraulic Power X/X X X X X X X X X - X -</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29A Hydraulic Power – Monitoring and indicating X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>30 Ice and Rain Protection X/X X X - X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>31 Indicating / Recording Systems X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>31A Instrument Systems X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32 Landing Gear X/X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32A Landing Gear – Monitoring and indicating X/X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>33 Lights X/X X X - X - X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>34 Navigation X/X - X - X - X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>35 Oxygen X/- X X X - - X X - - - -</td>
<td>X/-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>36 Pneumatic X/- X - X X X X X - X X X X X</td>
<td>X/-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>36A Pneumatic – Monitoring and indicating X/X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>37 Vacuum X/- X - X X X - - - - - -</td>
<td>X/-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>38 Water / Waste X/- X - X X X - - - - - -</td>
<td>X/-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>41 Water Ballast X/- - - - - - - - - - -</td>
<td>X/-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>42 Integrated modular avionics X/X - - - - - X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>44 Cabin Systems X/X - - - - - - X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>45 On-Board Maintenance System (or covered X/X X X X X X X X X X X X</td>
<td>X/X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chapters</td>
<td>B1/B2</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>in 31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 Information Systems X/X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>50 Cargo and Accessory Compartments X/X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Turbine / Piston Engine Module: -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>70 Standard Practices – Engines – only type particular -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>70A Constructional arrangement and operation X/X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turbine engines: -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>70B Engine Performance -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>71 Engine X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>72 Engine Turbine / Turbo Prop / Ducted Fan / Unducted fan X/X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73 Engine Fuel and Control X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73A FADEC Systems X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>74 Ignition X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75 Air X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>76 Engine Controls X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77 Engine Indicating X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>78 Exhaust X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79 Oil X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>80 Starting X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>82 Water Injection X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>83 Accessory Gearboxes X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>84 Propulsion Augmentation X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Auxiliary Power Units (APUs): -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>49 Auxiliary Power Units (APUs) X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piston Engines: -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>70 Standard Practices – Engines – only type particular -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>70A Constructional arrangement and operation X/X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70B Engine Performance -</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>71 Engine X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>73 Engine Fuel and Control X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73A FADEC Systems X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>74 Ignition X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>76 Engine Controls X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77 Engine Indicating X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>78 Exhaust X/X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79 Oil X/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
4 Type training examination and assessment standard

4.1 Theoretical element examination standard

After the theoretical portion of the aircraft type training has been completed, a written examination shall be performed, which shall comply with the following:

(a) Format of the examination is of the multi-choice type. Each multi-choice question shall have 3 alternative answers of which only one shall be the correct answer. The total time is based on the total number of questions and the time for answering is based upon a nominal average of 90 seconds per question.

(b) The incorrect alternatives shall seem equally plausible to anyone ignorant of the subject. All the alternatives shall be clearly related to the question and of similar vocabulary, grammatical construction and length.

(c) In numerical questions, the incorrect answers shall correspond to procedural errors such as the use of incorrect sense (+ versus -) or incorrect measurement units. They shall not be mere random numbers.

(d) The level of examination for each chapter (*) shall be the one defined in point 2 "Aircraft type training levels". However, the use of a limited number of questions at a lower level is acceptable.

(e) The examination shall be of the closed book type. No reference material is permitted. An exception will be made for the case of examining a B1 or B2 candidate’s ability to interpret technical documents.

(f) The number of questions shall be at least 1 question per hour of instruction. The number of questions for each chapter and level shall be proportionate to:

— the effective training hours spent teaching at that chapter and level,
— the learning objectives as given by the training needs analysis.
The AACM will assess the number and the level of the questions when approving the course.

(g) The minimum examination pass mark is 75 %. When the type training examination is split in several examinations, each examination shall be passed with at least a 75 % mark. In order to be possible to achieve exactly a 75 % pass mark, the number of questions in the examination shall be a multiple of 4.

(h) Penalty marking (negative points for failed questions) is not to be used.

(i) End of module phase examinations cannot be used as part of the final examination unless they contain the correct number and level of questions required.

(*) For the purpose of this point 4, a "chapter" means each one of the rows preceded by a number in the table contained in point 3.1(e).

4.2 *Practical element assessment standard*

After the practical element of the aircraft type training has been completed, an assessment must be performed, which must comply with the following:

(a) The assessment shall be performed by designated assessors appropriately qualified.

(b) The assessment shall evaluate the knowledge and skills of the trainee.

5 *On the Job Training*

On the Job Training (OJT) shall be approved by the AACM.

It shall be conducted at and under the control of a maintenance organisation appropriately approved for the maintenance of the particular aircraft type and shall be assessed by designated assessors appropriately qualified.

It shall have been started and completed within the 3 years preceding the application for a type rating endorsement.

(a) Objective:

The objective of OJT is to gain the required competence and experience in performing safe maintenance.

(b) Content:

OJT shall cover a cross section of tasks acceptable to the AACM. The OJT tasks to be completed shall be representative of the aircraft and systems both in complexity and in the technical input required to complete that task. While relatively simple tasks may be included, other more complex maintenance tasks shall also be incorporated and undertaken as appropriate to the aircraft type.

Each task shall be signed off by the student and countersigned by a designated supervisor. The tasks listed shall refer to an actual job card / work sheet, etc.

The final assessment of the completed OJT is mandatory and shall be performed by a designated assessor appropriately qualified.
The following data shall be addressed on the OJT worksheets / logbook:

1. Name of Trainee;
2. Date of Birth;
3. Approved Maintenance Organisation;
4. Location;
5. Name of supervisor(s) and assessor, (including licence number if applicable);
6. Date of task completion;
7. Description of task and job card / work order / tech log, etc.;
8. Aircraft type and aircraft registration;
9. Aircraft rating applied for.

In order to facilitate the verification by the AACM, demonstration of the OJT shall consist of (i) detailed worksheets / logbook and (ii) a compliance report demonstrating how the OJT meets the requirement of this Part.

6 Practical Experience

It shall be conducted at and under the control of a maintenance organisation appropriately approved for the maintenance of the applicable aircraft type ratings or aircraft (sub)group ratings being endorsed. The practical experience should be obtained under the supervision of authorised certifying staff.

It shall be completed within the 3 years preceding the application for the rating endorsement on the aircraft maintenance licence.
Appendix 4

Experience requirements for extending a MAR-66 Aircraft Maintenance Engineer Licence

The table below shows the experience requirements for adding a new category or subcategory to an existing MAR-66 licence.

The experience shall be practical maintenance experience on operating aircraft in the subcategory relevant to the application.

The experience requirement will be reduced by 50 % if the applicant has completed an approved MAR-147 course relevant to the subcategory.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>-</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>6 months</td>
<td>1 year</td>
<td>2 years</td>
</tr>
<tr>
<td>A2</td>
<td>6 months</td>
<td>-</td>
<td>6 months</td>
<td>6 months</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>6 months</td>
<td>1 year</td>
<td>2 years</td>
</tr>
<tr>
<td>A3</td>
<td>6 months</td>
<td>6 months</td>
<td>-</td>
<td>6 months</td>
<td>2 years</td>
<td>1 year</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>A4</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>-</td>
<td>2 years</td>
<td>1 year</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>B1.1</td>
<td>None</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>-</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>1 year</td>
<td>6 months</td>
</tr>
<tr>
<td>B1.2</td>
<td>6 months</td>
<td>None</td>
<td>6 months</td>
<td>6 months</td>
<td>2 years</td>
<td>-</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>None</td>
</tr>
<tr>
<td>B1.3</td>
<td>6 months</td>
<td>6 months</td>
<td>None</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>-</td>
<td>6 months</td>
<td>1 year</td>
<td>6 months</td>
</tr>
<tr>
<td>B1.4</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>None</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>-</td>
<td>2 years</td>
<td>6 months</td>
</tr>
<tr>
<td>B2</td>
<td>6 months</td>
<td>6 months</td>
<td>6 months</td>
<td>1 year</td>
<td>1 year</td>
<td>1 year</td>
<td>1 year</td>
<td>1 year</td>
<td>-</td>
<td>1 year</td>
</tr>
<tr>
<td>B3</td>
<td>6 months</td>
<td>None</td>
<td>6 months</td>
<td>2 years</td>
<td>6 months</td>
<td>2 years</td>
<td>1 year</td>
<td>2 years</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Intentionally Left Blank
Appendix 5

Sample of MAR-66 Aircraft Maintenance Engineer Licence

1) This appendix contains an example of the MAR-66 aircraft maintenance licence.

2) It should be noted that in order to qualify as MAR-145 certifying staff to issue a MAR 145.50 certificate of release to service for an aircraft, a person requires:
 a) A valid MAR-66 aircraft maintenance licence of appropriate scope; and
 b) A valid MAR-145 certification authorisation of appropriate scope.

3) With regard to the “MAR-66 Categories, Sub Categories, Aircraft Rating” page the AACM may choose not to issue this page until the first aircraft type rating needs to be endorsed and will need to issue more than one aircraft type rating page when there are a number to be listed.

4) Notwithstanding paragraph 3 above, each page issued will be in this format and contain the specified information for that page.

5) If there are no limitations applicable, the “MAR-66 Limitations” page will be issued stating “No limitations”.

6) The preparation of any change to an existing aircraft maintenance licence shall be carried out by the AACM.

7) The aircraft maintenance licence once issued is required to be kept by the person to whom it applies in good condition and who shall remain accountable for ensuring that no unauthorised entries are made.

8) Failure to comply with paragraph 7 may invalidate the document and could lead to the holder not being permitted to hold any certification privilege and may result in prosecution under the Macao SAR legislation.
Appendix 6
Aircraft Type Practical Experience and On-the-Job Training

List of Tasks

Time limits/Maintenance checks

- 100 hour check (general aviation aircraft).
- “B” or “C” check (transport category aircraft).
- Assist carrying out a scheduled maintenance check i.a.w. AMM.
- Review aircraft maintenance log for correct completion.
- Review records for compliance with Airworthiness Directives.
- Review records for compliance with component life limits.
- Procedure for inspection following heavy landing.
- Procedure for inspection following lightning strike.

Dimensions / Areas

- Locate component(s) by zone / station number.
- Perform symmetry check.

Lifting and Shoring

- Assist in:
 - Jack aircraft nose or tail wheel.
 - Jack complete aircraft.
 - Sling or trestle major component.

Levelling / Weighing

- Level aircraft.
- Weigh aircraft.
- Prepare weight and balance amendment.
- Check aircraft against equipment list.

Towing and Taxiing

- Prepare for aircraft towing.
- Tow aircraft.
- Be part of aircraft towing team.

Parking and Mooring

- Tie down aircraft.
- Park, secure and cover aircraft.
- Position aircraft in maintenance dock.
- Secure rotor blades.

Placards and Markings

- Check aircraft for correct placards.
- Check aircraft for correct markings.

Servicing

- Refuel aircraft.
- Defuel aircraft.
Carry out tank to tank fuel transfer.
Check / adjust tire pressures.
Check / replenish oil level.
Check / replenish hydraulic fluid level.
Check / replenish accumulator pressure.
Charge pneumatic system.
Grease aircraft.
Connect ground power.
Service toilet / potable water system.
Perform preflight / daily check.

Vibration and Noise Analysis
Analyse helicopter vibration problem.
Analyse noise spectrum.
Analyse engine vibration.

Air Conditioning
Replace combustion heater.
Replace flow control valve.
Replace outflow valve.
Replace safety valve.
Replace vapour cycle unit.
Replace air cycle unit.
Replace cabin blower.
Replace heat exchanger.
Replace pressurisation controller.
Clean outflow valves.
Deactivate / reactivate cargo isolation valve.
Deactivate / reactivate avionics ventilation components.
Check operation of air conditioning / heating system.
Check operation of pressurisation system.
Troubleshoot faulty system.

Auto flight
Install servos.
Rig bridle cables.
Replace controller.
Replace amplifier.
Replacement of the auto flight system LRUs in case of fly-by-wire aircraft.
Check operation of auto-pilot.
Check operation of auto-throttle / auto-thrust.
Check operation of yaw damper.
Check and adjust servo clutch.
Perform autopilot gain adjustments.
Perform mach trim functional check.
Troubleshoot faulty system.
Check autoland system.
Check flight management systems.
Check stability augmentation system.

Communications
Replace VHF com unit.
Replace HF com unit.
Replace existing antenna.
Replace static discharge wicks.
Check operation of radios.
Perform antenna VSWR check.
Perform Selcal operational check.
Perform operational check of passenger address system.
Functionally check audio integrating system.
Repair coaxial cable.
Troubleshoot faulty system.

Electrical Power
Charge lead / acid battery.
Charge Ni-Cad battery.
Check battery capacity.
Deep-cycle Ni-Cad battery.
Replace integrated drive / generator / alternator.
Replace switches.
Replace circuit breakers.
Adjust voltage regulator.
Change voltage regulator.
Amend electrical load analysis report.
Repair / replace electrical feeder cable.
Troubleshoot faulty system.
Perform functional check of integrated drive / generator / alternator.
Perform functional check of voltage regulator.
Perform functional check of emergency generation system.

Equipment / Furnishings
Replace carpets.
Replace crew seats.
Replace passenger seats.
Check inertia reels.
Check seats / belts for security.
Check emergency equipment.
Check ELT for compliance with regulations.
Repair toilet waste container.
Remove and install ceiling and sidewall panels.
Repair upholstery.
Change cabin configuration.
Replace cargo loading system actuator.
Test cargo loading system.
Replace escape slides / ropes.

Fire protection
Check fire bottle contents.
Check / test operation of fire / smoke detection and warning system.
Check cabin fire extinguisher contents.
Check lavatory smoke detector system.
Check cargo panel sealing.
Install new fire bottle.
Replace fire bottle squib.
Troubleshoot faulty system.
Inspect engine fire wire detection systems.

Flight Controls
Inspect primary flight controls and related components i.a.w. AMM.
Extending / retracting flaps & slats.
Replace horizontal stabiliser.
Replace spoiler / lift damper.
Replace elevator.
Deactivation / reactivation of aileron servo control.
Replace aileron.
Replace rudder.
Replace trim tabs.
Install control cable and fittings.
Replace slats.
Replace flaps.
Replace powered flying control unit.
Replace flat actuator.
Rig primary flight controls.
Adjust trim tab.
Adjust control cable tension.
Check control range and direction of movement.
Check for correct assembly and locking.
Troubleshoot faulty system.
Functional test of primary flight controls.
Functional test of flap system.
Operational test of the side stick assembly.
Operational test of the THS.
THS system wear check.

Fuel
Water drain system (operation).
Replace booster pump.
Replace fuel selector.
Replace fuel tank cells.
Replace / test fuel control valves.
Replace magnetic fuel level indicators.
Replace water drain valve.
Check / calculate fuel contents manually.
Check filters.
Flow check system.
Check calibration of fuel quantity gauges.
Check operation feed / selectors.
Check operation of fuel dump / jettison system.
Fuel transfer between tanks.
Pressure defuel.
Pressure refuel (manual control).
Deactivation / reactivation of the fuel valves (transfer defuel, X-feed, refuel).
Troubleshoot faulty system.
Hydraulics
Replace engine-driven pump.
Check / replace case drain filter.
Replace standby pump.
Replace hydraulic motor pump / generator.
Replace accumulator.
Check operation of shut off valve.
Check filters / clog indicators.
Check indicating systems.
Perform functional checks.
Pressurisation / depressurisation of the hydraulic system.
Power Transfer Unit (PTU) operation.
Replacement of PTU.
Troubleshoot faulty system.

Ice and rain protection
Replace pump.
Replace timer.
Inspect repair propeller deice boot.
Test propeller de-icing system.
Inspect / test wing leading edge de-icer boot.
Replace anti-ice / deice valve.
Install wiper motor.
Check operation of systems.
Operational test of the pitot-probe ice protection.
Operational test of the TAT ice protection.
Operational test of the wing ice protection system.
Assistance to the operational test of the engine air-intake ice protection (with engines operating).
Troubleshoot faulty system.

Indicating / recording systems
Replace flight data recorder.
Replace cockpit voice recorder.
Replace clock.
Replace master caution unit.
Replace FDR.
Perform FDR data retrieval.
Troubleshoot faulty system.
Implement ESDS procedures.
Inspect for HIRF requirements.
Start / stop EIS procedure.
Bite test of the CFDIU.
Ground scanning of the central warning system.

Landing Gear
Build up wheel.
Replace main wheel.
Replace nose wheel.
Replace steering actuator.
Replace truck tilt actuator.
Replace gear retraction actuator.
Replace uplock / downlock assembly.
Replace shimmy damper.
Rig nose wheel steering.
Functional test of the nose wheel steering system.
Replace shock strut seals.
Servicing of shock strut.
Replace brake unit.
Replace brake control valve.
Bleed brakes.
Replace brake fan.
Test anti skid unit.
Test gear retraction.
Change bungees.
Adjust micro switches / sensors.
Charge struts with oil and air.
Troubleshoot faulty system.
Test auto-brake system.
Replace rotorcraft skids.
Replace rotorcraft skid shoes.
Pack and check floats.
Flotation equipment.
Check / test emergency blowdown (emergency landing gear extension).
Operational test of the landing gear doors.

Lights
Repair / replace rotating beacon.
Repair / replace landing lights.
Repair / replace navigation lights.
Repair / replace interior lights.
Replace ice inspection lights.
Repair / replace logo lights.
Repair / replace emergency lighting system.
Perform emergency lighting system checks.
Troubleshoot faulty system.

Navigation
Calibrate magnetic direction indicator.
Replace airspeed indicator.
Replace altimeter.
Replace air data computer.
Replace VOR unit.
Replace ADI.
Replace HSI.
Check pitot static system for leaks.
Check operation of directional gyro.
Functional check weather radar.
Functional check doppler.
Functional check TCAS.
Functional check DME.
Functional check ATC Transponder.
Functional check flight director system.
Functional check inertial nav system.
Complete quadrantal error correction of ADF system.
Update flight management system database.
Check calibration of pitot static instruments.
Check calibration of pressure altitude reporting system.
Troubleshoot faulty system.
Check marker systems.
Compass replacement direct / indirect.
Check Satcom.
Check GPS.
Test AVM.

Oxygen
Inspect on-board oxygen equipment.
Purge and recharge oxygen system.
Replace regulator.
Replace oxygen generator.
Test crew oxygen system.
Perform auto oxygen system deployment check.
Troubleshoot faulty system.

Pneumatic systems
Replace filter.
Replace air shut off valve.
Replace pressure regulating valve.
Replace compressor.
Recharge dessicator.
Adjust regulator.
Check for leaks.
Troubleshoot faulty system.

Vacuum systems
Inspect the vacuum system i.a.w. AMM.
Replace vacuum pump.
Check / replace filters.
Adjust regulator.
Troubleshoot faulty system.

Water / Waste
Replace water pump.
Replace tap.
Replace toilet pump.
Perform water heater functional check.
Troubleshoot faulty system.
Inspect waste bin flap closure.

Central Maintenance System
Retrieve data from CMU.
Replace CMU.
Perform Bite check.
Troubleshoot faulty system.
Structures
Assessment of damage.
Sheet metal repair.
Fibre glass repair.
Wooden repair.
Fabric repair.
Recover fabric control surface.
Treat corrosion.
Apply protective treatment.

Doors
Inspect passenger door i.a.w. AMM.
Rig / adjust locking mechanism.
Adjust air stair system.
Check operation of emergency exits.
Test door warning system.
Troubleshoot faulty system.
Remove and install passenger door i.a.w. AMM.
Remove and install emergency exit i.a.w. AMM.
Inspect cargo door i.a.w. AMM.

Windows
Replace windshield.
Replace direct vision window.
Replace cabin window.
Repair transparency.

Wings
Skin repair.
Recover fabric wing.
Replace tip.
Replace rib.
Replace integral fuel tank panel.
Check incidence / rig.

Propeller
Assemble prop after transportation.
Replace propeller.
Replace governor.
Adjust governor.
Perform static functional checks.
Check operation during ground run.
Check track.
Check setting of micro switches.
Assessment of blade damage i.a.w. AMM.
Dynamically balance prop.
Troubleshoot faulty system.

Main Rotors
Install rotor assembly.
Replace blades.
Replace damper assembly.
Check track.
Check static balance.
Check dynamic balance.
Troubleshoot.

Rotor Drive
Replace mast.
Replace drive coupling.
Replace clutch / freewheel unit.
Replace drive belt.
Install main gearbox.
Overhaul main gearbox.
Check gearbox chip detectors.

Tail Rotors
Install rotor assembly.
Replace blades.
Troubleshoot.

Tail Rotor Drive
Replace bevel gearbox.
Replace universal joints.
Overhaul bevel gearbox.
Install drive assembly.
Check chip detectors.
Check / install bearings and hangers.
Check / service / assemble flexible couplings.
Check alignment of drive shafts.
Install and rig drive shafts.

Rotorcraft flight controls
Install swash plate.
Install mixing box.
Adjust pitch links.
Rig collective system.
Rig cyclic system.
Rig anti-torque system.
Check controls for assembly and locking.
Check controls for operation and sense.
Troubleshoot faulty system.

Engine
Build up ECU.
Replace engine.
Repair cooling baffles.
Repair cowl.
Adjust cowl flaps.
Repair faulty wiring.
Troubleshoot.
Assist in dry motoring check.
Assist in wet motoring check.
Assist in engine start (manual mode).
Piston Engines
Remove / install reduction gear.
Check crankshaft run-out.
Check tappet clearance.
Check compression.
Extract broken stud.
Install helicoil.
Perform ground run.
Establish / check reference RPM.
Troubleshoot.

Turbine Engines
Replace module.
Replace fan blade.
Hot section inspection / borescope check.
Carry out engine / compressor wash.
Carry out engine dry cycle.
Engine ground run.
Establish reference power.
Trend monitoring / gas path analysis.
Troubleshoot.

Fuel and control, piston
Replace engine driven pump.
Adjust AMC.
Adjust ABC.
Install carburettor / injector.
Adjust carburettor / injector.
Clean injector nozzles.
Replace primer line.
Check carburettor float setting.
Troubleshoot faulty system.

Fuel and control, turbine
Replace FCU.
Replace Engine Electronic Control Unit (FADEC).
Replace Fuel Metering Unit (FADEC).
Replace engine driven pump.
Clean / test fuel nozzles.
Clean / replace filters.
Adjust FCU.
Troubleshoot faulty system.
Functional test of FADEC.

Ignition systems, piston
Change magneto.
Change ignition vibrator.
Change plugs.
Test plugs.
Check H.T. leads.
Install new leads.
Check timing.
Check system bonding.
Troubleshoot faulty system.

Ignition systems, turbine
Perform functional test of the ignition system.
Check glow plugs / igniters.
Check H.T. leads.
Check ignition unit.
Replace ignition unit.
Troubleshoot faulty system.

Engine Controls
Rig thrust lever.
Rig RPM control.
Rig mixture HP cock lever.
Rig power lever.
Check control sync (multi-eng).
Check controls for correct assembly and locking.
Check controls for range and direction of movement.
Adjust pedestal micro-switches.
Troubleshoot faulty system.

Engine Indicating
Replace engine instruments(s).
Replace oil temperature bulb.
Replace thermocouples.
Check calibration.
Troubleshoot faulty system.

Exhaust, piston
Replace exhaust gasket.
Inspect welded repair.
Pressure check cabin heater muff.
Troubleshoot faulty system.

Exhaust, turbine
Change jet pipe.
Change shroud assembly.
Install trimmers.
Inspect / replace thrust reverser.
Replace thrust reverser component.
Deactivate / reactivate thrust reverser.
Operational test of the thrust reverser system.

Oil
Change oil.
Check filter(s).
Adjust pressure relief valve.
Replace oil tank.
Replace oil pump.
Replace oil cooler.
Replace firewall shut off valve.
Perform oil dilution test.
Troubleshoot faulty system.

Starting
Replace starter.
Replace start relay.
Replace start control valve.
Check cranking speed.
Troubleshoot faulty system.

Turbines, piston engines
Replace PRT.
Replace turbo-blower.
Replace heat shields.
Replace waste gate.
Adjust density controller.

Engine water injection
Replace water / methanol pump.
Flow check water / methanol system.
Adjust water / methanol control unit.
Check fluid for quality.
Troubleshoot faulty system

Accessory gear boxes
Replace gearbox.
Replace drive shaft.
Inspect magnetic chip detector.

APU
Removal / installation of the APU.
Removal / installation of the inlet guide-vane actuator.
Operational test of the APU emergency shut-down test.
Operational test of the APU.